L. Tran, Application of three graph Laplacian based semi-supervised learning methods to protein function prediction problem CoRR abs/1211, p.2012

L. Tran, Hypergraph and protein function prediction with gene expression data CoRR abs, 1212.
DOI : 10.12720/joace.3.2.164-170

T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori et al., A comprehensive two-hybrid analysis to explore the yeast protein interactome, Proceedings of the National Academy of Sciences, vol.98, issue.8, pp.4569-4574, 2001.
DOI : 10.1073/pnas.061034498

P. Uetz, G. Cagney, T. A. Mansfield, R. Judson, J. R. Knight et al., A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae Nature, pp.623-627, 2000.

A. C. Gavin, M. Bosche, R. Krause, P. Grandi, M. Marzioch et al., Functional organization of the yeast proteome by systematic analysis of protein complexes Nature, pp.141-147, 2002.

Y. Ho, A. Gruhler, A. Heilbut, G. D. Bader, L. Moore et al., Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry Nature, pp.180-183, 2002.

K. Tsuda, H. H. Shin, and B. Schoelkopf, Fast protein classification with multiple networks, Bioinformatics, vol.21, issue.Suppl 2, pp.59-65, 2005.
DOI : 10.1093/bioinformatics/bti1110

G. R. Lanckriet, M. Deng, N. Cristianini, M. I. Jordan, and N. W. , KERNEL-BASED DATA FUSION AND ITS APPLICATION TO PROTEIN FUNCTION PREDICTION IN YEAST, Biocomputing 2004, 2004.
DOI : 10.1142/9789812704856_0029

S. Letovsky and S. Kasif, Predicting protein function from protein/protein interaction data: a probabilistic approach, Bioinformatics, vol.19, issue.Suppl 1, pp.197-204, 2003.
DOI : 10.1093/bioinformatics/btg1026

K. Tsuda and W. S. Noble, Learning kernels from biological networks by maximizing entropy, Bioinformatics, vol.20, issue.Suppl 1, pp.326-333, 2004.
DOI : 10.1093/bioinformatics/bth906

L. Tran, The un-normalized graph p-Laplacian based semisupervised learning method and protein function prediction problem The Fifth International Conference on Knowledge Systems and Engineer, p.2013

S. Asthana, O. D. King, F. D. Gibbons, and F. P. Roth, Predicting Protein Complex Membership Using Probabilistic Network Reliability, Genome Research, vol.14, issue.6, pp.1170-1175, 2004.
DOI : 10.1101/gr.2203804

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC419795

T. Can, O. Camoglu, and A. K. Singh, Analysis of protein-protein interaction networks using random walks Proceedings of the 5th, ACM SIGKDD Workshop on Data Mining in Bioinformatics, 2005.

S. Brin and L. Page, The anatomy of a large-scale hypertextual Web search engine Computer Networks and ISDN Systems, pp.107-117, 1998.

L. Tran and L. Tran, Un-normalized graph p-Laplacian semisupervised learning method applied to cancer classification problem The Second International Conference on Intelligent and Automation Systems, 2014.

D. Zhou and B. Schölkopf, Discrete Regularization Book chapter, Semi-Supervised Learning, pp.221-232, 2006.