J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, Recommender systems survey. Knowledge-Based Systems, pp.109-132, 2013.

D. H. Park, H. K. Kim, I. Y. Choi, and J. K. Kim, A literature review and classification of recommender systems research, Expert Systems with Applications, vol.39, issue.11, pp.10059-10072, 2012.
DOI : 10.1016/j.eswa.2012.02.038

G. Adomavicius and A. Tuzhilin, Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions, IEEE Transactions on Knowledge and Data Engineering, vol.17, issue.6, pp.734-749, 2005.
DOI : 10.1109/TKDE.2005.99

R. Meteren and M. Someren, Using content-based filtering for recommendation, Machine Learning in the New Information Age: MLnet/ECML 2000 Workshop, pp.47-56, 2000.

L. Candillier, F. Meyer, and M. Boullé, Comparing State-of-the-Art Collaborative Filtering Systems, Machine Learning and Data Mining in Pattern Recognition, pp.548-562, 2007.
DOI : 10.1007/978-3-540-73499-4_41

N. Antonopoulus and J. Salter, Cinema screen recommender agent: combining collaborative and content-based filtering, IEEE Intell. Syst, vol.21, issue.1, pp.35-41, 2006.

N. Elsa, R. Franck, T. Oliver, and T. Ronan, Cold-Start Recommender System Problem Within a Multidimensional Data Warehouse, IEEE Seventh International Conference on Research Challenges in Information Science, pp.1-8, 2013.

B. N. Miller, I. Albert, S. K. Lam, J. A. Konstan, and J. Riedl, MovieLens unplugged, Proceedings of the 8th international conference on Intelligent user interfaces, IUI '03, pp.263-266, 2003.
DOI : 10.1145/604045.604094

A. Gediminas and T. Alexander, Extending Recommender Systems: A Multidimensional Approach, IJCAI Workshop on Intelligent Techniques for Web Personalization, pp.1-5, 2001.

R. G. Tiwari, M. Husain, B. Gupta, and A. Agrawal, Amalgamating Contextual Information into Recommender System, 2010 3rd International Conference on Emerging Trends in Engineering and Technology, pp.15-20, 2010.
DOI : 10.1109/ICETET.2010.110

A. Thor and E. Rahm, AWESOME ? A Data Warehouse-based System for Adaptive Website Recommendations, 30 th International Conference on Very large data bases, pp.384-395, 2004.
DOI : 10.1016/b978-012088469-8.50036-x

A. Krohn-grimberghe, A. Nanopoulos, and L. Schmidt-thieme, A Novel Multidimensional Framework for Evaluating Recommender Systems, ACM RecSys Workshop on User- Centric Evaluation of Recommender Systems and Their Interfaces, pp.34-41, 2010.