R. Mihalcea, C. Corley, and C. Strapparava, Corpus-based and knowledge-based measures of text semantic similarity, In AAAI, vol.6, pp.775-780, 2006.

A. Islam and D. Inkpen, Semantic text similarity using corpus-based word similarity and string similarity, ACM Transactions on Knowledge Discovery from Data, vol.2, issue.2, p.10, 2008.
DOI : 10.1145/1376815.1376819

M. Sahami and T. D. Heilman, A web-based kernel function for measuring the similarity of short text snippets, Proceedings of the 15th international conference on World Wide Web , WWW '06, pp.377-386, 2006.
DOI : 10.1145/1135777.1135834

Y. Li, D. Mclean, Z. A. Bandar, J. D. O-'shea, and K. Crockett, Sentence similarity based on semantic nets and corpus statistics, IEEE Transactions on Knowledge and Data Engineering, vol.18, issue.8, pp.18-1138, 2006.
DOI : 10.1109/TKDE.2006.130

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Oliva, J. I. Serrano, M. D. Del-castillo, and Á. Iglesias, SyMSS: A syntax-based measure for short-text semantic similarity, Data & Knowledge Engineering, vol.70, issue.4, pp.390-405, 2011.
DOI : 10.1016/j.datak.2011.01.002

N. X. Bach, N. L. Minh, and A. Shimazu, Exploiting discourse information to identify paraphrases, Expert Systems with Applications, vol.41, issue.6, pp.2832-2841, 2014.
DOI : 10.1016/j.eswa.2013.10.018

N. Madnani, J. Tetreault, and M. Chodorow, Re-examining Machine Translation Metrics for Paraphrase Identification, Proceedings of 2012 Conference of the North American Chapter, pp.182-190, 2012.

R. Socher, E. H. Huang, J. Pennington, A. Y. Ng, and C. D. Manning, Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection, In NIPS, vol.24, pp.801-809, 2011.

S. Fernando and M. Stevenson, A semantic similarity approach to paraphrase detection, Proceedings of the 11th Annual Research Colloquium of the UK Special Interest Group for Computational Linguistics, pp.45-52, 2008.

D. Das and N. Smith, Paraphrase identification as probabilistic quasi-synchronous recognition, Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 1, ACL-IJCNLP '09, pp.468-476, 2009.
DOI : 10.3115/1687878.1687944

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Qiu, M. Y. Kan, and T. S. Chua, Paraphrase recognition via dissimilarity significance classification, Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, EMNLP '06, pp.18-26, 2006.
DOI : 10.3115/1610075.1610079

URL : http://acl.ldc.upenn.edu/W/W06/W06-1603.pdf

V. Rus, P. M. Mccarthy, M. C. Lintean, D. S. Mcnamara, and A. C. Graesser, Paraphrase identification with lexico-syntactic graph subsumption, pp.201-206, 2008.
DOI : 10.1075/cilt.292.24rus

M. C. Lee, A novel sentence similarity measure for semantic-based expert systems, Expert Systems with Applications, vol.38, issue.5, pp.6392-6399, 2011.
DOI : 10.1016/j.eswa.2010.10.043

L. Wenyin, X. Quan, M. Feng, and B. Qiu, A short text modeling method combining semantic and statistical information, Information Sciences, vol.180, issue.20, pp.4031-4041, 2010.
DOI : 10.1016/j.ins.2010.06.021

W. Blacoe and M. Lapata, A comparison of vector-based representations for semantic composition, Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp.546-556

M. Lesk, Automatic sense disambiguation using machine readable dictionaries, Proceedings of the 5th annual international conference on Systems documentation , SIGDOC '86, pp.24-26, 1986.
DOI : 10.1145/318723.318728

G. Tsatsaronis, I. Varlamis, and M. Vazirgiannis, Text relatedness based on a word thesaurus, Journal of Artificial Intelligence Research, vol.37, issue.1, pp.1-40, 2010.

H. Rubenstein and J. B. Goodenough, Contextual correlates of synonymy, Communications of the ACM, vol.8, issue.10, pp.627-633, 1965.
DOI : 10.1145/365628.365657

H. M. Huynh, T. T. Nguyen, and T. H. Cao, Using coreference and surrounding contexts for entity linking, The 2013 RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for Future (RIVF), pp.1-5, 2013.
DOI : 10.1109/RIVF.2013.6719856