Big Data Spectra Analysis Using Analytical Programming and Random Decision Forests

Abstract : Spectra analysis on large datasets is in focus of this paper. First of all we discuss a method useful for spectra analysis – analytical programming and its implementation. Our goal is to create mathematical formulas of emission lines from spectra, which are characteristic for Be stars. One issue in performing this task is symbolic regression, which represents the process in our application, when measured data fits the best represented mathematical formula. In past this was only a human domain; nowadays, there are computer methods, which allow us to do it more or less effectively. A novel method in symbolic regression, compared to genetic programming and grammar evolution, is analytic programming. The aim of this work is to verify the efficiency of the parallel approach of this algorithm, using CUDA architecture. Next we will discuss parallel implementation of random decision forest (RDF) to classify huge amounts of various spectra. The mathematical formulas obtained via AP will be used to reduce attributes of explored spectra. Our goal is to propose scalable algorithm for classification of such data, which will preferably need only one pass over data, while maintaining acceptable accuracy. Later we will try to create module compatible with VO and DAta Mining and Exploration project.
Type de document :
Communication dans un congrès
Khalid Saeed; Václav Snášel. 13th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Nov 2014, Ho Chi Minh City, Vietnam. Springer, Lecture Notes in Computer Science, LNCS-8838, pp.266-277, 2014, Computer Information Systems and Industrial Management. 〈10.1007/978-3-662-45237-0_26〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01405596
Contributeur : Hal Ifip <>
Soumis le : mercredi 30 novembre 2016 - 11:01:57
Dernière modification le : jeudi 1 décembre 2016 - 01:04:16
Document(s) archivé(s) le : lundi 27 mars 2017 - 08:02:05

Fichier

978-3-662-45237-0_26_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Petr Šaloun, Peter Drábik, Ivan Zelinka, Jaroslav Bucko. Big Data Spectra Analysis Using Analytical Programming and Random Decision Forests. Khalid Saeed; Václav Snášel. 13th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Nov 2014, Ho Chi Minh City, Vietnam. Springer, Lecture Notes in Computer Science, LNCS-8838, pp.266-277, 2014, Computer Information Systems and Industrial Management. 〈10.1007/978-3-662-45237-0_26〉. 〈hal-01405596〉

Partager

Métriques

Consultations de la notice

31

Téléchargements de fichiers

25