D. C. Wells, E. W. Greisen, and R. H. Harten, FITS: A Flexible Image Transport System, Astronomy and Astrophysics Supplement Series, pp.363-370, 1981.

T. Rivinius, A. C. Carciofi, and C. Martayan, Classical Be stars, The Astronomy and Astrophysics Review, 2013.
DOI : 10.1007/s00159-013-0069-0

I. Zelinka, D. Davendra, R. Senkerik, R. Jasek, and Z. Oplatkova, Analytical Programming ? a Novel Approach for Evolutionary Synthesis of Symbolic Structures. Evolutionary Algorithms, pp.10-5772, 2011.

I. Zelinka, Z. Oplatkova, and L. Nolle, Analytic Programming ? Symbolic Regression by Means of Arbitrary Evolutionary Algorithms, In Special Issue on Inteligent Systems International Journal of Simulation , Systems, Science and Technology, vol.6, issue.9, pp.44-56, 2005.

I. Zelinka, Symbolic regression ? an overview

I. Zelinka and Z. Oplatkova, Analytic programming ? Comparative Study, CIRAS'03: The second International Conference on Computional Intelligence, Robotics and Autonomous Systems, 2003.

J. Lampinen and I. Zelinka, New Ideas in Optimization ? Mechanical Engineering Design Optimization by Differential Evolution, 1999.

I. Zelinka, Artificial Intelligence in The Problems of Global Optimization, Czech) BEN, 190 p, 2002.

L. P. De-veronese and K. R. , Differential evolution algorithm on the GPU with C-CUDA, IEEE Congress on Evolutionary Computation, 2010.
DOI : 10.1109/CEC.2010.5586219

P. Kralj, Differential Evolution with parallelised objective functions using CUDA, 2013.

P. Kromer, J. Platos, V. Snasel, and A. A. , Many-threaded implementation of differential evolution for the CUDA platform, Proceedings of the 13th annual conference on Genetic and evolutionary computation, GECCO '11, pp.1595-1602, 2011.
DOI : 10.1145/2001576.2001791

R. Farber, CUDA Application Design and Development

L. Breiman, Random Forests Breiman L.: Bagging predictors. Machine Learn- ing, Machine Learning, pp.532-123, 2001.

R. Caruana and A. Niculescu-mizil, An empirical comparison of supervised learning algorithms, Proceedings of the 23rd international conference on Machine learning , ICML '06, pp.161-168, 2006.
DOI : 10.1145/1143844.1143865

T. K. Ho, The Random Subspace Method for Constructing Decision Forests, IEEE Trans. Pattern Anal. Mach. Intell, vol.20, issue.8, pp.832-844, 1998.

Y. Ben-haim and E. Tom-tov, A Streaming Parallel Decision Tree Algorithm, J. Mach. Learn. Res, vol.11, pp.849-872, 2010.

B. Li, X. Chen, M. J. Li, J. Z. Huang, and S. Feng, Scalable random forests for massive data Advances in Knowledge Discovery and Data Mining -Volume Part I (PAKDD'12, Proceedings of the 16th Pacific-Asia conference on, pp.135-146, 2012.