J. Nash, Non-Cooperative Games, The Annals of Mathematics, vol.54, issue.2, pp.286-295, 1951.
DOI : 10.2307/1969529

J. V. Neumann and O. Morgenstern, Theory of Games and Economic Behavior, 1944.

L. Campos, Fuzzy linear programming models to solve fuzzy matrix games, Fuzzy Sets and Systems, vol.32, issue.3, pp.275-289, 1989.
DOI : 10.1016/0165-0114(89)90260-1

M. Delgado, J. Verdegay, and M. Vila, Playing Matrix Games Defined by Linguistic Labels, pp.298-310, 1990.
DOI : 10.1007/978-94-009-2109-2_25

D. F. Li, An effective methodology for solving matrix games with fuzzy payoffs, IEEE Transactions on Cybernetics, vol.43, issue.2, pp.610-621, 2013.

D. Butnariu, Fuzzy games: A description of the concept, Fuzzy Sets and Systems, vol.1, issue.3, pp.181-192, 1978.
DOI : 10.1016/0165-0114(78)90003-9

D. Butnariu, Solution concept for n-Person games Advances in Fuzzy Set Theory and Application, 1979.

V. Vijay, S. Chandra, and C. Bector, Bimatrix games with fuzzy payoffs and fuzzy goals, Fuzzy Optimization and Decision Making, vol.3, pp.327-344, 2004.

L. Monroy, M. Hinojosa, A. Mrmol, and F. Fernandez, Set-valued cooperative games with fuzzy payoffs. The fuzzy assignment game, European Journal of Operational Research, vol.225, issue.1, pp.85-90, 2013.
DOI : 10.1016/j.ejor.2012.08.024

L. Cunlin and Z. Qiang, Nash equilibrium strategy for fuzzy non-cooperative games, Fuzzy Sets and Systems, vol.176, issue.1, pp.46-55, 2011.
DOI : 10.1016/j.fss.2011.03.015

M. Larbani, Non cooperative fuzzy games in normal form: A survey, Fuzzy Sets and Systems, vol.160, issue.22, pp.3184-3210, 2009.
DOI : 10.1016/j.fss.2009.02.026

G. Dantzig, Linear Programming and Extensions, 1963.
DOI : 10.1515/9781400884179

J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, 2001.

J. M. Mendel, R. I. John, and F. Liu, Interval Type-2 Fuzzy Logic Systems Made Simple, IEEE Transactions on Fuzzy Systems, vol.14, issue.6, pp.808-821, 2006.
DOI : 10.1109/TFUZZ.2006.879986

G. J. Klir and T. A. Folger, Fuzzy Sets, Uncertainty and Information, 1992.

G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, 1995.

J. C. Figueroa-garcía, An approximation method for type reduction of an interval Type-2 fuzzy set based on ?-cuts, IEEE Proceedings of FEDCSIS 2012, pp.1-6, 2012.

N. N. Karnik and J. M. Mendel, Centroid of a type-2 fuzzy set, Information Sciences, vol.132, issue.1-4, pp.195-220, 2001.
DOI : 10.1016/S0020-0255(01)00069-X

K. Duran, H. Bernal, and M. Melgarejo, Improved iterative algorithm for computing the generalized centroid of an interval type-2 fuzzy set, NAFIPS 2008, 2008 Annual Meeting of the North American Fuzzy Information Processing Society, 2008.
DOI : 10.1109/NAFIPS.2008.4531244

J. C. Figueroa, A general model for linear programming with interval type-2 fuzzy technological coefficients, 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), pp.1-6, 2012.

J. C. Figueroa and G. Hernández, Computing Optimal Solutions of a Linear Programming Problem with Interval Type-2 Fuzzy Constraints, Lecture Notes in Computer Science, vol.7208, pp.567-576, 2012.
DOI : 10.1007/978-3-642-28942-2_51

J. C. Figueroa-garcía and G. Hernández, A Transportation Model with Interval Type-2 Fuzzy Demands and Supplies, Lecture Notes in Computer Science, vol.7389, issue.1, pp.610-617, 2012.
DOI : 10.1007/978-3-642-31588-6_78

F. S. Hillier and G. J. Lieberman, Introduction to Operations Research, 2012.