J. Koza, Genetic Programming: A paradigm for genetically breeding populations of computer programs to solve problems, 1990.

C. Ryan, J. Collins, and M. O. Neill, Grammatical evolution: Evolving programs for an arbitrary language, Lecture Notes in Computer Science, 1998.
DOI : 10.1007/BFb0055930

I. Zelinka, Z. Oplatkova, and L. Nolle, Analytic programming ? Symbolic regression by means of arbitrary evolutionary algorithms, Int. J. of Simulation, Systems, Science and Technology, vol.6, issue.9, pp.44-56, 2005.

C. Johnson, C. Ryan, T. Soule, M. Keijzer, E. Tsang et al., Artificial Immune System Programming for Symbolic Regression, Lecture Notes in Computer Science, pp.345-353, 2004.
DOI : 10.1007/3-540-36599-0_32

R. Weisser and P. Osmera, Two-Level Transplant Evolution for Optimization of General Controllers, 2010.

R. Weisser and P. Osmera, Two-level Tranpslant Evolution, 17th Zittau Fuzzy Colloquium, 2010.

R. Weisser, P. Osmera, and R. Matousek, Transplant Evolution with Modified Schema of Differential Evolution: Optimization Structure of Controllers, International Conference on Soft Computing MENDEL, 2010.

M. O. Neill and A. Brabazon, Grammatical Differential Evolution, Proceedings of International Conference on Artificial Intelligence, pp.231-236, 2006.

I. Zelinka and Z. Oplatkova, Analytic programming ? Comparative study, Proceedings of Second International Conference on Computational Intelligence, 2003.

J. Koza, M. Keane, and M. Streeter, Evolving Inventions, Scientific American, vol.288, issue.2, pp.40-47, 2003.
DOI : 10.1038/scientificamerican0203-52

I. Zelinka, D. Davendra, R. Senkerik, R. Jasek, and Z. Oplatkova, Analytical Programming -a Novel Approach for Evolutionary Synthesis of Symbolic Structures, Evolutionary Algorithms: 10.5772/16166. Avail- able from: http://www.intechopen.com/books/evolutionary- algorithms/analytical-programming-a-novel-approach-for- evolutionary-synthesis-of-symbolic-structures, pp.978-953, 2011.

I. Zelinka, R. Senkerik, and M. Pluhacek, Do evolutionary algorithms indeed require randomness?, 2013 IEEE Congress on Evolutionary Computation, pp.2283-2289, 2013.
DOI : 10.1109/CEC.2013.6557841

I. Zelinka, M. Chadli, D. Davendra, R. Senkerik, M. Pluhacek et al., Hidden Periodicity -Chaos Dependance on Numerical Precision prediction, modeling and analysis of complex systems, Proceedings of Nostradamus 2013: International conference Series: Advances in Intelligent Systems and Computing, pp.47-59, 2013.

I. Zelinka, M. Chadli, D. Davendra, R. Senkerik, M. Pluhacek et al., Do Evolutionary Algorithms Indeed Require Random Numbers? Extended Study prediction, modeling and analysis of complex systems, Proceedings of Nostradamus 2013: International conference Series: Advances in Intelligent Systems and Computing, pp.61-75, 2013.

K. Price, An Introduction to Differential Evolution, New Ideas in Optimization, pp.79-108, 1999.

I. Zelinka, SOMA ? Self Organizing Migrating Algorithm, in New Optimization Techniques in Engineering, pp.167-218, 2004.

Z. Oplatkova and I. Zelinka, Investigation on artificial ant using analytic programming, Proceedings of the 8th annual conference on Genetic and evolutionary computation , GECCO '06, pp.949-950, 2006.
DOI : 10.1145/1143997.1144164

M. O. Neill and C. Ryan, Grammatical Evolution, Evolutionary Automatic Programming in an Arbitrary Language, 2003.

H. Beyer, Theory of Evolution Strategies, 2001.
DOI : 10.1007/978-3-662-04378-3

V. Cern, Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm, Journal of Optimization Theory and Applications, vol.21, issue.1, pp.41-51, 1985.
DOI : 10.1007/BF00940812

S. Kirkpatrick, G. Jr, C. D. Vecchi, and M. P. , Optimization by Simulated Annealing, Science, vol.220, issue.4598, pp.671-680, 1983.
DOI : 10.1126/science.220.4598.671

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.123.7607

M. Clerc, Particle Swarm Optimization, 2006.
DOI : 10.1002/9780470612163

URL : https://hal.archives-ouvertes.fr/hal-01155162

R. Caponetto, L. Fortuna, S. Fazzino, and M. Xibilia, Chaotic sequences to improve the performance of evolutionary algorithms, IEEE Transactions on Evolutionary Computation, vol.7, issue.3, pp.289-304, 2003.
DOI : 10.1109/TEVC.2003.810069

M. Pluhacek, V. Budikova, R. Senkerik, Z. Oplatkova, and I. Zelinka, Extended Initial Study on the Performance of Enhanced PSO Algorithm with Lozi Chaotic Map, Proceedings of Nostradamus 2012: International conference on prediction, modeling and analysis of complex systems Series: Advances in Intelligent Systems and Computing, pp.167-178, 2012.
DOI : 10.1007/978-3-642-33227-2_19

M. Pluhacek, R. Senkerik, and I. Zelinka, Impact of Various Chaotic Maps on the Performance of Chaos Enhanced PSO Algorithm with Inertia Weight ??? An Initial Study, Proceedings of Nostradamus 2012: International conference on prediction, modeling and analysis of complex systems Series: Advances in Intelligent Systems and Computing, pp.153-166, 2012.
DOI : 10.1007/978-3-642-33227-2_18

K. J. Persohn and R. J. Povinelli, Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation, Chaos, Solitons & Fractals, vol.45, issue.3, pp.2012-238
DOI : 10.1016/j.chaos.2011.12.006

M. Drutarovsky and P. Galajda, A Robust Chaos-Based True Random Number Generator Embedded in Reconfigurable Switched-Capacitor Hardware, 2007 17th International Conference Radioelektronika, pp.29-34, 2007.
DOI : 10.1109/RADIOELEK.2007.371423

M. Bucolo, R. Caponetto, L. Fortuna, M. Frasca, and A. Rizzo, Does chaos work better than noise?, Circuits and Systems Magazine, pp.4-19, 2002.
DOI : 10.1109/mcas.2002.1167624

H. Hu, L. Liu, and N. Ding, Pseudorandom sequence generator based on the Chen chaotic system, Computer Physics Communications, vol.184, issue.3, pp.184-765, 2013.
DOI : 10.1016/j.cpc.2012.11.017

A. Pluchino, A. Rapisarda, and C. Tsallis, Noise, synchrony, and correlations at the edge of chaos, Physical Review E, vol.87, issue.2, pp.10-1103, 2013.
DOI : 10.1103/PhysRevE.87.022910

R. Lozi, EMERGENCE OF RANDOMNESS FROM CHAOS, International Journal of Bifurcation and Chaos, vol.22, issue.02, pp.10-1142, 2012.
DOI : 10.1142/S0218127412500216

URL : https://hal.archives-ouvertes.fr/hal-01326704

X. Xing-yuan-wang and . Qin, A new pseudo-random number generator based on CML and chaotic iteration, Nonlinear Dynamics An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems Nonlinear Dyn, vol.70, issue.70, pp.1589-1592, 2012.

K. Narendra, V. Pareek, . Patidar, K. Krishan, and . Sud, A Random Bit Generator Using Chaotic Maps, International Journal of Network Security, vol.10, issue.1, p.3238, 2010.

W. Xing-yuan and Y. Lei, Design Of Pseudo-Random Bit Generator Based On Chaotic Maps, International Journal of Modern Physics B, vol.26, issue.12502089, pp.10-1142, 2012.

Y. Sun, L. Zhang, and . Gu-xingsheng, A hybrid co-evolutionary cultural algorithm based on particle swarm optimization for solving global optimization problems, International Conference on Life System Modeling and Simulation / International Conference on Intelligent Computing for Sustainable Energy and Environment (LSMS- ICSEE) Location, pp.17-20, 2010.
DOI : 10.1016/j.neucom.2011.08.043

H. Wei-chiang, D. Yucheng, W. Zhang, C. Yu, . Li-yueh et al., Cyclic electric load forecasting by seasonal SVR with chaotic genetic algorithm, International Journal of Electrical Power and Energy Sysytems

M. Chadli, T. Zlinka, and . Youssef, Unknown inputs observer design for fuzzy systems with application to chaotic system reconstruction, Computers & Mathematics with Applications, vol.66, issue.2, pp.147-154, 2013.
DOI : 10.1016/j.camwa.2013.01.018

I. Zelinka, M. Chadli, D. Davendra, R. Senkerik, and R. Jasek, An investigation on evolutionary reconstruction of continuous chaotic systems, Mathematical and Computer Modelling, vol.57, issue.1-2, pp.2-15, 2013.
DOI : 10.1016/j.mcm.2011.06.034