Network Anomaly Detection Using Parameterized Entropy

Abstract : Entropy-based anomaly detection has recently been extensively studied in order to overcome weaknesses of traditional volume and rule based approaches to network flows analysis. From many entropy measures only Shannon, Titchener and parameterized Renyi and Tsallis entropies have been applied to network anomaly detection. In the paper, our method based on parameterized entropy and supervised learning is presented. With this method we are able to detect a broad spectrum of anomalies with low false positive rate. In addition, we provide information revealing the anomaly type. The experimental results suggest that our method performs better than Shannon-based and volume-based approach.
Type de document :
Communication dans un congrès
Khalid Saeed; Václav Snášel. 13th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Nov 2014, Ho Chi Minh City, Vietnam. Springer, Lecture Notes in Computer Science, LNCS-8838, pp.465-478, 2014, Computer Information Systems and Industrial Management. 〈10.1007/978-3-662-45237-0_43〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01405630
Contributeur : Hal Ifip <>
Soumis le : mercredi 30 novembre 2016 - 11:12:25
Dernière modification le : jeudi 1 décembre 2016 - 01:04:16
Document(s) archivé(s) le : lundi 27 mars 2017 - 09:05:52

Fichier

978-3-662-45237-0_43_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Przemysław Bereziński, Marcin Szpyrka, Bartosz Jasiul, Michał Mazur. Network Anomaly Detection Using Parameterized Entropy. Khalid Saeed; Václav Snášel. 13th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Nov 2014, Ho Chi Minh City, Vietnam. Springer, Lecture Notes in Computer Science, LNCS-8838, pp.465-478, 2014, Computer Information Systems and Industrial Management. 〈10.1007/978-3-662-45237-0_43〉. 〈hal-01405630〉

Partager

Métriques

Consultations de la notice

68

Téléchargements de fichiers

73