
HAL Id: hal-01406115
https://inria.hal.science/hal-01406115

Submitted on 2 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Look-Ahead Simulation Algorithm for DBN Models of
Biochemical Pathways

Sucheendra K. Palaniappan, Matthieu Pichené, Grégory Batt, Eric Fabre,
Blaise Genest

To cite this version:
Sucheendra K. Palaniappan, Matthieu Pichené, Grégory Batt, Eric Fabre, Blaise Genest. A Look-
Ahead Simulation Algorithm for DBN Models of Biochemical Pathways. Hybrid Systems Biology, 5th
International Workshop, HSB 2016, Oct 2016, Grenoble, France. pp.3-15, �10.1007/978-3-319-47151-
8_1�. �hal-01406115�

https://inria.hal.science/hal-01406115
https://hal.archives-ouvertes.fr

A Look-ahead Simulation Algorithm for
DBN Models of Biochemical Pathways

Sucheendra K. Palaniappan1,2, Matthieu Pichené1, Gregory Batt2, Eric Fabre1, and
Blaise Genest3

1 INRIA, Campus de Beaulieu, Rennes, France
2 INRIA Saclay - Ile de France, Palaiseau, France

3 CNRS, IRISA, Rennes, France

Abstract. Dynamic Bayesian Networks (DBNs) have been proposed [16] as an
efficient abstraction formalism of biochemical models. They have been shown to
approximate well the dynamics of biochemical models, while offering improved
efficiency for their analysis [17,18]. In this paper, we compare different represen-
tations and simulation schemes on these DBNs, testing their efficiency and accu-
racy as abstractions of biological pathways. When generating these DBNs, many
configurations are never explored by the underlying dynamics of the biological
systems. This can be used to obtain sparse representations to store and analyze
DBNs in a compact way. On the other hand, when simulating these DBNs, singu-
lar configurations may be encountered, that is configurations from where no tran-
sition probability is defined. This makes simulation more complex. We initially
evaluate two simple strategies for dealing with singularities: First, re-sampling
simulations visiting singular configurations; second filling up uniformly these
singular transition probabilities. We show that both these approaches are error
prone. Next, we propose a new algorithm which samples only those configura-
tions that avoid singularities by using a look-ahead strategy. Experiments show
that this approach is the most accurate while having a reasonable run time.

1 Introduction

Biological pathway systems are usually modeled by a network of reactions. Their dy-
namics is governed by mathematical formalisms that are usually either ordinary dif-
ferential equations (in case of deterministic systems) or some stochastic processes (for
non-deterministic systems). Usually, owing to non-linearity and high dimensionality of
the system, it is almost always impossible to obtain closed form solutions. Instead, large
scale numerical simulations are performed, which are computationally resource inten-
sive. Additionally, there is an inherent limitation of working with biological systems in
that usually there is a limited amount of noisy observations of the system. Guided by
these considerations, Liu et al., [16] proposed a class of probabilistic graphical models
called Dynamic Bayesian Networks (DBNs) as efficient abstractions of the dynamics
defined by the numerical simulations. DBNs have been used to model and study bio-
logical systems leading to novel finding in immune system regulation [18].

The basic procedure for abstracting the dynamics of these pathway models as DBNs
first consists of discretizing the time and value domain of all the biological species in

the model. The state of every biological species of the model corresponds to a discrete-
valued random variable in the DBN which represents the discretized concentrations of
the associated species. Additionally, it is assumed that each of these random variables
are locally dependent on a small subset of other random variables between adjacent
time points. This local dependency is dictated by the network structure defined by the
underlying mathematical formalism. Having fixed the structure of the DBN, next, as-
suming a set of initial configurations of the system, a large number of representative
numerical simulations are drawn. They are used to then fill the Conditional Probability
Tables (CPTs) of the DBN by a simple counting strategy. This can be made efficiently
using the power of GPUs [15]. More details of this abstraction are described in Sec-
tion 2.2. Once we have constructed the abstraction, instead of analyzing the complex
mathematical model, one can study the properties of the biochemical model by analyz-
ing the much simpler DBN model. This significantly reduces the computational burden
of repetitive analysis tasks on the original system as shown in [17, 18]. Probabilistic
verification methods can also be applied [11, 15] to further augment the framework.

Analysis on the DBN often transform to the task of computing the probability dis-
tributions of the random variables at the different time points. There are two ways of
getting these distributions, one by computing the probabilities using a class of approx-
imate inference algorithms [2, 12, 19, 21], and the other by drawing numerous simula-
tions from the underlying DBN and averaging to evaluate the probability distributions.
We focus on the latter in this paper. The process of simulation involves starting from
a configuration according to the initial distributions of the DBN and drawing a config-
uration for the next time point according to the conditional probabilities. Contrary to
inference, simulations can also be useful when modeling say a tissue of thousands of
DBNs, where individual DBNs can have different constraints and cannot be abstracted
as a population.

In this paper, we first analyze the specificities of DBNs obtained as abstraction of
biological pathways with the method of [16]. We observe that many configurations are
never explored by the system, and thus the corresponding entries of the CPTs are not
filled. Using case studies, we show that the CPTs are actually very sparse, and we can
use this sparsity to encode CPTs in a very efficient way.

However, the fact that many configurations are not explored produces singularities,
which makes simulation on such DBNs more complex. Typically, drawing a simulation
from the DBN involves starting from an initial value assignment over all variables of
the DBN (drawn from the initial distribution). Next, for each variable, independently,
we pick its value assignment at the next time point according to the distribution dictated
by the CPT entries corresponding to its current value assignment. We continue this pro-
cedure for all time points of the DBN. In this simulation procedure, singularities appear
when a CPT entry for the current value assignment is undefined. This happens when
the current value assignment has never been explored, which is possible as values of
variables are generated independently (see Section 2.3). In the most simple case, one
discards these simulations and reruns the simulation procedure until a complete simu-
lation trace is obtained. We show that using such a simulation strategy, which we call
simple simulation, results in many simulation traces visiting singular configurations.
Moreover, it is not very accurate, and quite slow. One way to circumvent the concern

2

of singularities in the DBN is to consider that when the CPT is undefined, all possible
future configurations are equally likely. We call this procedure uniform simulation. We
show that it is fast but also inaccurate.

Our main contribution in this paper is to propose a new simulation strategy, namely
look-ahead simulation, which generates at every time point tuples of values instead
of independently generating these values. The probability transitions are conditioned
in such a way to never generate singularities. For efficiency reasons, this is used only
when singularities are first encountered, i.e, we follow the simple simulation unless the
configuration reached is singular, in which case look-ahead simulation is used. This
strategy will be called adaptive look-ahead simulation. We show that simulating DBNs
using this adaptive strategy is more accurate than the other two. It is also faster than
simple simulation when there are lots of singularities. We experimentally evaluate the
accuracy and efficiency of these algorithms on three DBN models, two of whom arise
from Ordinary Differential Equations (ODE) models of enzyme kinetics and EGF-NGF
pathway and one from a hybrid stochastic deterministic model of apoptosis.

Related work: Probabilistic dynamical models arise in many other settings in the
study of biochemical networks. In particular, there is considerable work based on Con-
tinuous Time Markov Chains (CTMC) [4, 5, 10, 11, 13, 14, 17, 22]. Typically, in these
studies, every single reaction changing the configuration is executed individually, lead-
ing to extremely small time steps. Analysis methods based on Monte Carlo simula-
tions [7–9, 11], probabilistic model checking [14] as well as numerically solving the
Chemical Master Equation describing a CTMC [6,10] are used to study these continu-
ous time systems. In contrast, we are using DBNs in this paper, which is a discrete time
stochastic model, abstracting biological systems using a fixed (larger) time step.

Structure of the paper: The next section discusses DBN models of biological path-
ways as presented in [16] and also describes the issue of singularities arising in these
DBNs with a simple example. Section 3 describes the simple method of simulating the
DBN, and the other alternate strategies to circumvent the singularities in the DBN in-
cluding our improved simulation procedure. Section 4 describes the DBNs produced
automatically from pathways that we consider for experiments in this paper. Section 5
reports our results followed by a conclusion.

2 DBN Models of Biological Systems
We begin by introducing notations to present DBNs. The notations are largely adapted
from those introduced in [21].

2.1 Dynamic Bayesian Networks (DBNs)

Throughout the sections we fix an ordered set of n random variables {X1, . . . , Xn} and
let i, j range over {1, 2, . . . , n}. We denote by X the tuple (X1, . . . , Xn). The random
variables take values from the discrete set V of cardinality K < ∞. We use xi and vi
to denote a value taken by Xi. We consider DBNs that are time dependent but with a
time invariant structure [19]. The underlying structure is unrolled over a finite number
of time points, using the same restrictions as in [17].

We will adopt the following notations. xI will denote a vector of values over the
index set I ⊆ {1, 2, . . . , n}. It will be viewed as a map xI : I → V . We will often

3

denote xI(i) as xI,i or just xi if I is clear from the context. If I = {i} is singleton, and
xI(i) = xi, we will identify xI with xi. If I is the full index set {1, 2, . . . , n}, we will
simply write x. We call such a tuple x a configuration.

A Dynamic Bayesian Network (DBN) is a structure D = (X , T,Pa, {Ct
i}) where:

– T is a positive integer with t ranging over the set of time points {0, 1, . . . , T}.
– X = {Xt

i | 1 ≤ i ≤ n, 0 ≤ t ≤ T} is the set of random variables. These variables
will be associated with the nodes of the DBN. Xt

i is the instance of Xi at time
point t.

– Pa assigns a set of parents to each node and satisfies: (i) Pa(X0
i = ∅) (ii) If Xt′

j ∈
Pa(Xt

i) then t′ = t−1. (iii) If Xt−1
j ∈ Pa(Xt

i) for some t then Xt′−1
j ∈ Pa(Xt′

i)
for every t′ ∈ {1, 2, . . . , T}. Thus nodes at the t − 1 time point are connected to
nodes at the tth time point remains invariant as t ranges over {1, 2, . . . , n}.

– Ct
i is the Conditional Probability Table (CPT) associated with the node Xt

i speci-
fying the probabilities P (Xt

i | Pa(Xt
i)).

The regular structure of the DBNs induces the function PA given by: Xj ∈ PA(Xi)

iff Xt−1
j ∈ Pa(Xt

i) for some t. We define î = {j | Xj ∈ PA(Xi)}, so that P (Xt
i |

Pa(Xt
i)) = P (Xt

i | X
t−1
î

). Thus Ct
i (xi | uî) = p specifies p to be the probability of

Xi = xi at time t given that at time t − 1, Xj1 = uj1 , Xj2 = uj2 , . . . , Xjm = ujm

with î = {j1, j2, . . . , jm}.
The semantics of a DBN is the following: from a configuration y at time t− 1, the

probability to move to configuration x at time t is P t(x | y) =
∏n

i=1 C
t
i (xi | yî).

2.2 DBN Models as abstraction of biological systems

The dynamics of a pathway are often modeled by a system of equations. For instance,
with ODE systems, there is one equation of the form dy

dt = f(y,k) for each molecular
species y, with f describing the kinetics of the reactions that produce and consume y,
y being the molecules taking part in these reactions and k denoting the rate constants
associated with these reactions.

Liu et al. developed a dynamic Bayesian network approximation from a system
of ODEs [16, 17] describing pathway dynamics to compactly store and analyze the
dynamics of the original system. Its main features are illustrated by a simple enzyme
kinetics system shown in Fig. 1. In the original work, aspects of parameter uncertainty
were considered, however, for simplicity, we will not deal with them in this study as it
is not the focus of discussion in this paper.

The dynamics of the system is assumed to be of interest only for discrete time
points up to a maximal time point. Let us assume that they are denoted as {0, 1, . . . , T}.
There is random variable Yi corresponding to every molecular species yi. The range of
each variable Yi is quantized into a set of intervals Ii = {Ii0, . . . , IiK−1}, with K the
number of intervals for variable Yi. The quantized dynamics is intrinsically stochastic,
as even for deterministic dynamics (e.g. of an ODE system), it is possible that two
distinct deterministic configurations correspond to the same quantized configuration,
but their deterministic successors are in distinct quantized configurations. Initial values
of the system are assumed to follow a distribution. Initial configurations are sampled
according to this distribution, and trajectories are generated by simulating the system

4

)(b)(c

ESk
dt
dP

ESkkESk
dt
dES

ESkkESk
dt
dE

ESkESk
dt
dS

.

).(..

).(..

...

3

321

321

21

=

+−=

++−=

+−=

)(a

ESES + PE +
k1 = 0.1

k2 = 0.2

k3 = 0.2

dS
dt

= −0.1⋅S ⋅E + 0.2 ⋅ES

dE
dt

= −0.1⋅S ⋅E + (0.2+ r3) ⋅ES

dES
dt

= 0.1⋅S ⋅E − (0.2+ r3) ⋅ES

dP
dt

= r3 ⋅ES

!! !!

…"…"

…"…"

…"…"

…"…"

€

ST

€

EST

€

ET

€

PT

€

S1

€

ES1

€

E1

€

P1

€

S0

€

ES0

€

E 0

€

P 0

€

Pr(ES1 = I' ' | S0 = I',E 0 = I,ES0 = I' ',r3
0 = I') = 0.4

€

0

€

T

€

Time :

€

(c)

€

(b)

ESES + PE +
€

r1 = 0.1

€

r3

€

r2 = 0.2

€

(a)

Pr(ES1=I’’’|S0=I’, E0=I’’, ES0=I) = 0.2

Fig. 1. a) The enzyme catalytic reaction network (b) The ODEs model (c) The DBN approxima-
tion for 2 successive time points

from these samples. These trajectories are then compactly approximated as a DBN,
treated as an approximation of the dynamics of the system.

For this, the reaction network is used to define the structure (local dependency rela-
tion). As discussed before, there is one random variable Y t

i for each molecular species
yi at time t. The node Y t−1

b will be in Pa(Y t
i) iff b appears in the mathematical equation

of species yi or if i = b.
CPT entries are of the form Ct

i (v | l) = p, which says that p is the probability of
the value of Yi falling in the interval Iiv at time t, given that for each Y t−1

j ∈ Pa(Y t
i),

the value of Yj was in Ijlj . We evaluate this probability p through simple counting. For
instance, among the generated trajectories, the number of simulations where the value
of Yj falls in the interval Ijlj at time t− 1 simultaneously for each j ∈ î is recorded, say
Jl. Next, among these Jl trajectories, the number of these where the value of Yi falls in
the interval Iiv at time t is recorded. If this number is Jv then the empirical probability
p is set to be Jv

Jl
. We refer interested readers to Liu et al.’s work [16] for the details.

We thus have
∑

v∈V Ct
i (v | l) = 1. There is a special case when Jl = 0 where we

set p = 0. This implies that
∑

v∈V Ct
i (v | l) = 0, since all these entries will be null.

In this case, we will say that the DBN has singularities. This happens when the tuple
of intervals corresponding to l has not been visited at time point t − 1 by simulating
the original system. This is actually the case for a majority of the entries of the DBNs
generated from all the biological pathways we tested on (see Section 4 and experimental
results in Table 1).

2.3 Singularities in DBNs

In this section, we will illustrate how a DBN is generated from a simple system with
two variables. We will explain how singularities appear in DBN obtained in such a way,
and potential problems arising from these singularities.

Consider a system with 2 variables X1 and X2 each of whom take values from the
discrete set {0, 1}. Figure 2 (a) shows the possible configurations of the system for all
value assignments of the variables. For instance, the rectangle corresponding to (0, 0)
means that the system is at configuration defined by X1 = 0 and X2 = 0 and so on.
Figure 2 (a) also shows that the original dynamics of the system forbids it from reaching

5

1,0 0,0

1,1 0,1
x 2

 =
 1

x 2

 =
 0

x1 = 0 x1 = 1

(a)$ (b)$

(X1,$X2)$$$
t"

X1$$
t+1"

%$

(0,0)" 0"
1"

(1,0)" 0"
1"

(0,1)" 0"
1"

Unreachable""
configura6on"

(c)$

1,0 0,0

1,1 0,1

x 2
 =

 1

x 2
 =

 0

x1 = 0 x1 = 1

??$

60%

15
%

20%

5%

100%

100%

x1 x1

x2 x2

t t +1

(X1,$X2)$$$
t"

X2$$
t+1"

%$

(0,0)" 0"
1"

(1,0)" 0"
1"

(0,1)" 0"
1"

75$
25$ 20$

80$

0$

100$
100$

100$

100$0$

0$
0$

Fig. 2. a) The dynamics defined by the 2 variable system (b) The assumed DBN model and the
CPT entries (c) According to the DBN, every configuration is reachable, including (1, 1) from
which no CPT entry is defined.

the configuration (1, 1) i.e., the system cannot reach the configuration with both X1 = 1
and X2 = 1. More precisely, if the system is in configuration (0, 0) at time t, at time
t+1, it can stay in the same configuration (0, 0), or go to configuration (0, 1) or (1, 0).
However, it cannot go to configuration (1, 1).

Fig. 2 (b) shows the DBN construction from the system in Fig. 2 (a), as outlined in
the previous subsection. Variables Xt+1

1 , Xt+1
2 are dependent on both Xt

1 and Xt
2, as

shown on the top part of the figure. The bottom part of Fig. 2 (b) shows the conditional
probability table for Xt+1

1 and Xt+1
2 . For instance, in the table for Xt+1

1 , the first col-
umn describes the parent configuration tuples, i.e, the values for Xt

1 and Xt
2. The second

column describes the value Xt+1
1 can take. The third column represents the correspond-

ing probabilities. The first row describes that if (Xt
1, X

t
2) = (0, 0), then Xt+1

1 taking
value 0 (resp. 1) has probability 75% (resp. 25%) of happening. This CPT is stochastic:∑

v∈{0,1} C
t
i (v | (0, 0)) =

∑
v∈{0,1} C

t
i (v | (0, 1)) =

∑
v∈{0,1} C

t
i (v | (1, 0)) = 1.

Notice that owing to the system dynamics, there is no value in the CPT correspond-
ing to (Xt

1, X
t
2) taking value (1, 1), which is a source of singularity in the CPT. Two

problems arise from singularities, as shown in Fig. 2 (c). First, from configuration
(Xt

1, X
t
2) = (0, 0), there is a (small but non null) probability to sample 1 for vari-

able Xt+1
1 and 1 for variable Xt+1

2 , and thus to end up in configuration (1, 1). This is a
problem because configuration (1, 1) does not correspond to a behavior of the original
system. An additional problem is that from this singular configuration (1, 1), there is no
defined outgoing probability distribution.

6

3 Simulation Algorithms
In this section we will first discuss the usual simple algorithm for simulating DBNs.
These simulations can potentially encounter singular configurations. In the simple al-
gorithm, such simulations, called unsuccessful, are discarded since they may lead to
inefficiencies and inaccuracies. We will propose two algorithms to circumvent this is-
sue. The first algorithm simulates CPT entries which are singular by choosing successor
configurations uniformly at random. It can be very efficient, although it can be more er-
ror prone than simple simulations. Our main contribution is the design of the look-ahead
simulation algorithm, which samples configurations of the DBNs in such a way to avoid
singularities. It thus produces lower unsuccessful simulations, but could be slower.

3.1 Simple Simulation Algorithm

The simple simulation, as shown in Alg. 1, samples every variable independently. It
draws a value wi for each variable (the for loop at line 2) according to the distribution
described by Ct

i (. | vî) for v the value assignment which has been sampled at the
previous time point (recall that vî restricts v to the subset of parents of i). For t = 0,
wi is initialized according to the distribution P (X0

i). The for loop at line 10 checks if
the new configuration is singular, in which case the simulation is discarded (Abort at
line 15). Such a simulation is termed unsuccessful. We consider for each variable i the
set Preti (line 11) of tuples l of values at time t over the set of parents î of node i, and
which have been seen in the simulations (that is

∑
k∈K Ct

i (k | l) = 1).
For instance, with the DBN in Fig. 2 (b), from configuration (0, 0), there is a small

chance to sample w1 = 1 (e.g. x = rand([0, 1]) = 0.9 which will enter the while
loop once and set y at 1) and w2 = 1 (for the same reason), in which case the test
w1̂ = (1, 1) /∈ Preti = {(0, 0), (1, 0), (0, 1)} (line 11) raises the exception Abort.

Algorithm 1 Simple Simulation of DBNs
1: for t = 0..T do
2: for i = 1, ..., n do
3: x← rand([0, 1])
4: y ← 0
5: z ← Ct

i (y | vî) . % For t = 0, C0
i (y | vî) = C0

i (y) = P (X0
i)

6: while x > z do
7: y ← y + 1, z ← z + Ct

i (y | vî)
8: wi ← y

9: if t > 0 then
10: for i = 1, ..., n do
11: Preti ← {l ∈ V î |

∑
k∈K Ct

i (k | l) = 1} . Set of possible value assignments
for î

12: if wî ∈ Preti then
13: vi ← wi

14: else
15: Abort

7

3.2 Uniform Simulation Algorithm

A naive solution to avoid unsuccessful simulations is to assume a predetermined CPT
entry Ct

i (y | vî) for singular cases where
∑

y∈V Ct
i (y | vî) = 0. For simplicity and

compactness of the representation, we assume uniform probabilities: Ct
i (y | vî) = 1/K

(with K the number of values in V) for all y ∈ V for singular vî at time t. In this case,
for every t, i and every vî, we have

∑
y∈V Ct

i (y | vî) = 1.
The uniform stimulation algorithm thus uses the simple simulation of Fig. 1, how-

ever with fully defined CPTs. As a result of this, we no longer have the issue of drawing
unsuccessful samples. The for loop from line 10 to 15 is unnecessary and hence re-
moved. Although this results in speed-up of drawing effective simulations (all samples
are effective), the underlying dynamics can be less accurate, as the information that l
has not been sampled is lost with this uniform simulation.

For instance, with the DBN in Fig. 2 (b), from configuration (0, 0), there is a small
chance to draw configuration (1, 1) (same as with the simple simulation). Now, using
the uniform algorithm, simulations from (1, 1) are not discarded, and instead the system
can go to any configuration of {(0, 0), (1, 0), (0, 1), (1, 1)}, with a 25% of chance for
each.

3.3 Look-ahead Simulation Algorithm

In this section we propose a more involved simulation, called look-ahead simulation.
The main idea is to sample tuples of values v representing the configuration at time t,
according to the configuration y at time t − 1 and the corresponding CPTs, but con-
ditioned to the fact that v has been seen at time t at least once during the original
simulations of the system. Computing exactly this conditional probability is however
not possible in general as that would require to recompute on the fly the probability for
each of the many possible tuples v.

Instead, for efficiency reasons, we over-approximate this set of configurations. We
fill up iteratively a partial value assignment W remembering the values of variables
which have been already set (W [i] = −1 if i has not yet been set). The i-th iteration,
focused on the variable i, assigns values for parents of i, that is for variables in î. For
this, we consider the set Preti(W) which only retains value assignments vî for î at time
t which have been seen in the simulations and which are consistent with W .

Notice that by (inductive) construction of vĵ , Ct
i (l[j] | vĵ) is well defined at line 8.

In order to justify Algorithm 2, we prove that it is equivalent to Algorithm 1 in an ideal
case where Algorithm 1 is correct. In particular, in that case, the distribution does not
depend upon the order in which variables are considered in Algorithm 2.

Theorem 1. In the case where there is no singular configurations, Algorithm 2 gener-
ates the same distribution over configurations W than Algorithm 1.

Proof (Sketch of.). The probability of choosing W for Algorithm 1 is the product∏
j C

t
j(W [j] | vĵ). We show by induction on the number of variables that W is also

generated with this probability by Algorithm 2. If there are no variables, this is trivial.
Since there are no singular configurations, Preti(W) = {l ∈ V î | ∀m with W [m] 6=

−1, l[m] = W [m]}. We will show the property is true for W restricted to variables
I ′ = î∪{j |W [j] 6= −1}, which we denote by W |I′ . Let J = {j ∈ î |W [j] 6= −1}. It

8

Algorithm 2 Look-ahead simulation of DBNs
1: W [1, ..., n] = {−1, ...,−1} . W [i] = −1 means that the value of variable i is not yet set
2: for i = 1, ..., n do
3: Preti(W) = {l ∈ V î |

∑
k∈K Ct

i (k | l) = 1 ∧ ∀m with W [m] 6= −1, l[m] = W [m]}
4: s← 0
5: for all l ∈ Preti(W) do . Compute the probabilities for value assignments in Preti(W)
6: p← 1
7: for all j ∈ î do . Compute probabilities of l
8: p← p · Ct

i (l[j] | vĵ)
9: Prob[l]← p

10: s← s+ p . Sum of probabilities in Preti(W)

11: if s = 0 then Abort . No configurations are consistent with W

12: x← rand([0, s])
13: z ← 0
14: for all l ∈ Preti(W) do . Pick a l according to Prob
15: z ← z + Prob[l]
16: if x ≥ z then . The current l has been chosen for variables in î
17: for all j ∈ î do
18: W [j]← l[j]

19: break
20: for i = 1, ..., n do
21: vi ←W [i]

is easy to see that at line 10 of Algorithm 2, s will be equal to s =
∏

j∈J Ct
j(W [j] | vĵ),

because for all j ∈ î \ J ,
∑

l[j] C
t
i (l[j] | vĵ) = 1 (no singular configurations). Hence

choosing W |I′ will be done with probability
∏

j∈î C
t
j(W [j]|vĵ)

s (to select Wî\J at line
14), times Prob(W |{j|W [j]6=−1}) (to have selected W |{j|W [j] 6=−1} after i − 1). By in-
duction hypothesis, the second term is

∏
j|W [j]6=−1 C

t
j(W [j] | vĵ). The first term can

be simplified into
∏

j∈î\J Ct
j(W [j] | vĵ)

s
s . This proves the result by induction.

The set of value assignments vî for î which have been explored is small (< 1000,
see Table 1 in Section 5.1), compared to the set of visited value assignments v for all
variables. In order to set a value assignment vî for variables in î, we draw one value
assignment in Preti(W), according to its probability w.r.t. the sum of probabilities of
all value assignments in Preti(W) (that is the probability of drawing a value assignment
in Preti(W) is the same as for the simple simulation, but conditioned to the fact that a
value assignment of Preti(W) is drawn). If all variables of W can be set in this way,
then by definition we have that W is not a singular configuration.

This look-ahead algorithm can however be quite slow because of the overhead of
recomputing probabilities conditioned to sampling only non singular configurations.
To speed up the process, we use an adaptive procedure, which first uses the simple
simulation, and only at the time point when a singularity is encountered uses the look-
ahead algorithm to compute a new value assignment at this time point.

9

Notice that it may still be the case that the look-ahead algorithm Abort (line 11), in
case where there is no value assignments in Preti(W) (that is s = 0).

For instance, in the example from Section 2.3, Pret=1
1 (W) = Pret=1

1 ({−1,−1}) =
{(0, 0), (1, 0) , (0, 1)}. Starting from configuration (0, 0) at time t = 0, we compute
Prob[(0, 0)] = 60%, Prob[(0, 1)] = 15%, and Prob[(1, 0)] = 20%. We have s =
95%, and we sample (0, 0) with probability 60/95. Notice that (1, 1) will never be gen-
erated. Assume that (0, 0) is drawn (e.g. x = rand([0, 1]) = 0.5). Now, W = {0, 0},
and we have Pret=1

2 ({0, 0}) = {(0, 0)}. It gives Prob[(0, 0)] = 60%, s = 60% and
thus (0, 0) is sampled with probability 60/60 = 1. On this simple example, there is no
unsuccessful trajectory using the look-ahead simulation.

4 DBN models considered in the experiments
In this section, we will introduce the case-studies that we use to construct DBNs and
test the different DBN simulation algorithms we discussed in the previous section.

4.1 Enzyme catalytic kinetics

The enzyme catalytic system is shown in Fig. 1. It describes a typical mass action based
kinetics of the binding (ES) of enzyme (E) with substrate(S) and its subsequent catalysis
to convert the substrate into product (P). The value space of each variable is divided into
5 equal intervals. The time scale of the system is 10 minutes which was divided into
100 time points. To fill up the conditional probability tables, 5 · 105 trajectories were
generated from the ODE model.

4.2 EGF-NGF pathway

The EGF-NGF pathway describes the behavior of PC12 cell to EGF or NGF stimulation
[3]. The ODE model of this pathway is available in the BioModels database [20]. It
consists of 32 differential equations (one for each molecular species). As before, the
value domains of the 32 variables were divided into 5 equal intervals. The time horizon
of each model was set at 10 minutes which was divided into 100 time points. To fill up
the conditional probability tables, 5 · 105 trajectories were generated by simulating the
ODE model.

4.3 Apoptosis pathway

TNF-related apoptosis-inducing ligand (TRAIL) is a protein that is known to induce
apoptosis in cancer cells and hence has been considered as a target for anti-cancer
therapeutic strategies. However, biological observations suggest that in a population
of cells, application of TRAIL leads to only fractional killing of cells (for instance,
70% of deaths after 8 hours for 250ng/ml of TRAIL) and also a time dependent evolu-
tion of cell resistance to TRAIL. Several models have been proposed to understand this
mechanism, specifically an Hybrid Stochastic Deterministic (HSD) model [1] which
combines a deterministic signal transduction model (modeled as ordinary differential
equations (ODEs)), and a stochastic model for protein synthesis fluctuations (factoring
cell-to cell variability). The model consists of 58 protein variables, the time horizon of
the model was studied over an 8 hour period which was divided into 45 time points. To
fill up the conditional probability tables, 5·105 trajectories were generated by simulating
the HSD model.

10

R

TRAIL

R:TRAIL DISC DISC:Flip

Bid

Bcl2c

tBid:Bcl2

Bax

tBid

C8*:Bar

Bar

Flip

C8*
Bax*

C3*:XIAP

XIAP

C3_deg

C3* C3

C6* C6

C8

Apop

Smac

Smac:XIAP

Apop:XIAP

cPARP PARP

C9

Apaf*

Apaf

CyC CyC

Pore

Smac

Bax*

Bax2*

Bax4*

Bcl2

Bax*Bcl2

Bax2*Bcl2

Bax4*Bcl2

Mito

Mitochondria

Cytosol

Fig. 3. Apoptosis pathway

5 Experiments
We now evaluate the different DBN simulation algorithms on the DBNs generated for
the systems described before. We measure the % of effective samples, mean error, and
time taken per effective sample to assess the different approaches. We also discuss the
aspect of sparsity in CPTs for all of these DBNs.

5.1 Sparse CPTs.

For each of the DBNs that we constructed, Table 1 shows the base statistics in terms of
the number of variables and time-points considered for them. For a DBN, the maximal
number of CPT entries corresponding to any variable of the DBN is given by KN+1

where N the maximal number of parents any node of the DBN can have and K is the
cardinality of that node. For instance, in the enzyme kinetics system, N = 3 (see Fig.1).
Similarly, N = 5 for EGF-NGF pathway and N = 8 for apoptosis pathway. In all our
case studies K = 5 for all variables, the number of discrete intervals we assume. If
represented explicitly, these entries potentially make for a large CPT table, whose size
is reported in MB. These numbers are shown in Table 1.

As explained in Section 2.3, some of these entries may be 0 since they have not been
visited by system simulations used to build the DBN. Actually, we notice that most of
the entries are in fact null: only at most 10 (resp. 28 and 851) out of the KN+1 entries are
non null (reported in the last but one column). This simple observation leads to a sparse
representation for DBNs which is very compact (last column). All analysis on DBNs
can be adapted to this sparse representation, which was not exploited in e.g. [16, 17].

Over all the systems we tested, ranging from very simple to more complex ones,
we found that all of them exhibit very sparse CPTs. The main reason for this can be
attributed to the fact that parents of nodes are usually very correlated and capture the
underlying dynamics well, and while they can individually take all of the 5 values, only
very few of the combinations are observed in the systems, which explain why the sparse
representation is so efficient.

11

Case study Number
Variables

Number
Time points

Max Number
CPT entries

per value assignment

Explicit DBN
size (MB)

Max CPT
entries 6= 0
per value

assignment

Sparse DBN
size (MB)

Enzyme 4 100 125 1.1 10 0.049
EGF-NGF 32 100 3125 434.4 28 0.605
Apoptosis 58 45 390625 > 20000 851 1.5

Table 1. Sparsity in CPTs

Notice that although CPT entries are sparse (because parents of nodes are highly
correlated), it is not the case for the joint distributions over all the variables. For in-
stance, in the apoptosis pathway, out of 200000 simulations, 95% of the simulations
resulted in distinct joints, that is very few end up having the same joints (at most 5%
reach the same joints). This implies that explicitly keeping every non null joints over all
variables is not feasible, although it is a practical once restricted to parents of a variable
(which is what the DBN encodes well with a sparse encoding).

5.2 Evaluation of simulation algorithms

We designed tests to compare the different simulation algorithms presented in Section 3
(called simple, uniform and adaptive (for the adaptive look-ahead algorithm) in the Ta-
bles 2 and 3). We evaluated them on the different DBNs generated from the biological
systems described in Section 4. For all case studies reported here we perform experi-
ments by drawing 10000 samples from the underlying DBN and analyzing them.

We mainly measure and compare a) the % of effective runs for the algorithms (not
reported for uniform simulation as it is always 100%), b) the time needed for each
effective simulation, and c) the difference between outputs of these three algorithms
and the original dynamics (Enzyme, EGF-NGF, Apoptosis), in terms of mean error of
the different trajectories. Mean error is computed as mean over the weighted difference
between the marginals computed by the DBN algorithm and marginals of the quantized
traces of the original system of each variable

All results are summarized in Table 2. For the enzyme kinetics system, almost all
simple simulations are effective (98%), and so all the three algorithms show no tangible
difference, with a very good agreement with the dynamics of the original biological
pathway.

Case study effectiveness
simple | adaptive

time per effect. sample
uniform | simple | adaptive

mean error
uniform | simple | adaptive

Enzyme 98% | 100% 1.81ms | 2.33ms | 2.26ms 0.454% | 0.347% | 0.429%
EGF-NGF 36% | 100% 20.3ms | 30.4ms | 26.8ms 2.22% | 1.63% | 1.30%
Apoptosis 3.1% | 83% 8.46 ms | 121 ms | 68.0ms 14.7% | 6.82% | 4.47%

Table 2. Comparing uniform, simple and adaptive look-ahead simulations.

12

co
nc

en
tra

tio
n

Time points

Mek active

Erk active

R* cPARP

R-FlipBax:m-Bcl2

Time points

Biochemical model DBN with !
adaptive simulation

DBN with !
uniform simulation

DBN with !
simple simulation

Time points

co
nc

en
tra

tio
n

co
nc

en
tra

tio
n

Time points

co
nc

en
tra

tio
n

Time points

Mek active

Erk active

R* cPARP

R-FlipBax:m-Bcl2

Time points

Biochemical model DBN with !
adaptive simulation

DBN with !
uniform simulation

DBN with !
simple simulation

Time points

co
nc

en
tra

tio
n

co
nc

en
tra

tio
n

Time points

Fig. 4. Mean value of trajectories for selected species in the EGF-NGF pathway (top 2) and
in the apoptosis pathway (bottom 4), as simulated by the biochemical model (solid green), the
DBN using the simple simulations (black), adaptive look-ahead simulations (red), and uniform
simulations (blue).

For the EGF-NGF case, there was a clear percentage of unsuccessful simple simu-
lations (64%), and the three algorithms give considerably different results. The adaptive
look-ahead algorithm is overall more faithful than the simple simulation while being as
fast, however, the uniform algorithm is faster but less accurate (70% more errors than
the adaptive look-ahead algorithm). The mean error may seem small because for most
proteins, there is a very low error (e.g. ERK active in Fig. 4 top left), although tangible
difference could be seen (especially using the uniform simulation) on few proteins (e.g.
Mek active in Fig. 4 top right).

For Apoptosis, the number of effective simple simulations was very low (3.1%), and
the errors of our algorithms w.r.t. the biological system were larger, as shown in Fig. 4
(bottom). The simple algorithm was the slowest and quite inaccurate, due to very few
effective samples. The uniform algorithm was very fast, while being very inaccurate,
with very large errors on some proteins, as shown in Fig. 4 (bottom).

Overall, the adaptive look-ahead algorithm succeeds in bringing up to 24 times
(Apoptosis in Table 2) more effective samples compared with the simple simulation.
It fails to reach 100% only in the extreme case where most simple simulations fail.
The adaptive look-ahead simulation clearly improves the accuracy of the simulation.
Last, runtime is not impacted by choosing adaptive look-ahead over simple simulation.
Instead, in extreme case, adaptive look-ahead simulation can outperform simple simu-
lations in the number of effective samples being simulated per unit of time (Table 2).

There might be specific cases where the performance of simulation algorithms can
become very important, for instance, when the simulations can have different lengths

13

apoptosis HSD
model

Uniform
simulation

Simple
simulation

Adaptive
simulation

dead cells 70% 99.4% 99.7% 73%

Table 3. percentage dead cells for different simulation strategies

(e.g. a simulation is truncated when a cell dies in the apoptosis pathway). In this case, a
DBN simulation can lead to configurations of the system representing cell death. If the
simulation reached some of these configurations, then the cell is declared dead and no
further simulation is performed. This also means that an alive cell will have simulation
traces equal to the number of time points considered. Consequentially, owing to the
limitations of the simple simulation, generating alive cells is considerably harder. This
is evident in Table 3, where the simple and uniform strategy produce > 99% cell death,
while the original system dynamics [1] predicts a 70% death rate.

The simple strategy also has an extremely low efficiency (3.1%): almost all effective
simple simulations of the apoptosis pathway end up dead (99.7%). Uniform simulations
give very inaccurate results as well (99.4% vs 70% of dead cells). On the other hand,
using the look-ahead simulation, most of the simulations are effective (83%). We also
obtain a death rate close to the one of HSD model (73% instead of 70%).
6 Conclusions
In this paper, we have highlighted and systematically characterized singularities ob-
served in DBNs obtained as abstractions of biological pathway dynamics [17] follow-
ing the method of [16]. The main characteristic of these DBNs is that many entries of
the CPTs are null. We show that this can be used to vastly improve the representation of
DBNs using sparse encoding. However, it is also a source of inaccuracy when simulat-
ing these DBNs. Compared with the usual algorithm which is used to simulate DBNs,
we propose two different simulation algorithms. First, a uniform simulation procedure
which is faster but also less accurate. This should be preferred when time as a resource
is limited and a crude evaluation is sufficient. More importantly, we developed a new
adaptive look-ahead simulation which is comparable in run time or faster than simple
simulation and also is the most accurate, as it produces very limited number of unsuc-
cessful simulations compared to simple simulations (up to 24 times less). In terms of
future work, we plan to develop a class of models more accurate than DBNs, that would
encode probabilities of tuples of variables in CPTs rather than over single variables.

Acknowledgments
This work was partially supported by ANR projects STOCH-MC (ANR-13-BS02-0011-
01) and Iceberg (ANR-IABI-3096).

References
1. F. Bertaux, S. Stoma, D. Drasdo, and G. Batt. Modeling Dynamics of Cell-to-Cell Vari-

ability in TRAIL-Induced Apoptosis Explains Fractional Killing and Predicts Reversible
Resistance. PLoS Computational Biology, 10(10):14, 2014.

2. X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In UAI-98,
pages 33–42, 1998.

14

3. K. S. Brown, C. C. Hill, G. A. Calero, K. H. Lee, J. P. Sethna, and R. A. Cerione. The
statistical mechanics of complex signaling networks: nerve growth factor signaling. Physical
Biology 1, pages 184–195, 2004.

4. M. Calder, V. Vyshemirsky, D. Gilbert, and R.J. Orton. Analysis of signalling pathways
using continuous time markov chains. T. Comp. Sys. Biology, pages 44–67, 2006.

5. V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based modelling of cellular
signalling. In CONCUR, pages 17–41, 2007.

6. F. Didier, T. A. Henzinger, M. Mateescu, and V. Wolf. Approximation of event probabilities
in noisy cellular processes. Theor. Comput. Sci., 412, 2011.

7. R. Donaldson and D. Gilbert. A model checking approach to the parameter estimation of
biochemical pathways. In CMSB, pages 269–287, 2008.

8. F. Fages and A. Rizk. On the analysis of numerical data time series in temporal logic. In
CMSB’07, LNCS 4695, pages 48–63, 2007.

9. R. Grosu and S. A. Smolka. Monte carlo model checking. In TACAS, pages 271–286, 2005.
10. T.A. Henzinger, M. Mateescu, and V. Wolf. Sliding window abstraction for infinite markov

chains. In CAV, pages 337–352, 2009.
11. S. K. Jha, E. M. Clarke, C. J. Langmead, A. Legay, A. Platzer, and P. Zuliani. A bayesian

approach to model checking biological systems. In CMSB, pages 218–234, 2009.
12. D. Koller and N. Friedman. Probabilistic Graphical Models - Principles and Techniques.

MIT Press, 2009.
13. M. Z. Kwiatkowska, G. Norman, and D. Parker. Symbolic Systems Biology, chapter Proba-

bilistic Model Checking for Systems Biology. Jones and Bartlett, 2010.
14. M.Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model

checker. In TOOLS’02, LNCS 2324, pages 200–204, 2002.
15. B. Liu, A. Hagiescu, S. K. Palaniappan, B. Chattopadhyay, Z. Cui, W.-F. Wong, and PS Thi-

agarajan. Approximate probabilistic analysis of biopathway dynamics. Bioinformatics,
28(11):1508–1516, 2012.

16. B. Liu, D. Hsu, and P.S. Thiagarajan. Probabilistic approximations of ODEs based bio-
pathway dynamics. Theor. Comput. Sci., 412:2188–2206, May 2011.

17. B. Liu, P. S. Thiagarajan, and D. Hsu. Probabilistic approximations of signaling pathway
dynamics. In CMSB, LNCS 5688, Springer, pages 251–265, 2009.

18. B. Liu, J. Zhang, P.Y. Tan, D. Hsu, A. Blom M., B. Leong, S. Sethil, B. Ho, J.L. Ding, and
P.S. Thiagarajan. A computational and experimental study of the regulatory mechanisms of
the complement system. PLoS Comput Biol, 7(1):e1001059, 01 2011.

19. K.P. Murphy and Y. Weiss. The factored frontier algorithm for approximate inference in
DBNs. In UAI’01, pages 378–385, 2001.

20. N. Le Novere, B. Bornstein, A. Broicher, M. Courtot, M. Donizelli, H. Dharuri, H. Sauro
L. Li, M. Schilstra, B. Shapiro, J. Snoep, and M. Hucka. Biomodels database: A free, central-
ized database of curated, published, quantitative kinetic models of biochemical and cellular
systems. Nucleic Acids Research 34, pages D689– D691, 2006.

21. S. K. Palaniappan, S. Akshay, B. Genest, and P. S. Thiagarajan. A hybrid factored frontier
algorithm. TCBB, 9(5):1352–1365, 2012.

22. W.S.Hlavacek, J.R.Faeder, M.L.Blinov, R.G.Posner, M.Hucka, and W.Fontana. Rules for
modeling signal-transduction systems. Science STKE, 2006:re6, 2006.

15

