Sequential Collaborative Ranking Using (No-)Click Implicit Feedback

Frédéric Guillou 1 Romaric Gaudel 1, 2 Philippe Preux 1, 2
1 SEQUEL - Sequential Learning
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Abstract : We study Recommender Systems in the context where they suggest a list of items to users. Several crucial issues are raised in such a setting: first, identify the relevant items to recommend; second, account for the feedback given by the user after he clicked and rated an item; third, since new feedback arrive into the system at any moment, incorporate such information to improve future recommendations. In this paper, we take these three aspects into consideration and present an approach handling click/no-click feedback information. Experiments on real-world datasets show that our approach outperforms state of the art algorithms.
Type de document :
Communication dans un congrès
The 23rd International Conference on Neural Information Processing (ICONIP'16), Oct 2016, Kyoto, Japan. 9948, pp.288 - 296, 2016, Lecture Notes in Computer Science. 〈10.1007/978-3-319-46672-9_33〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01406338
Contributeur : Romaric Gaudel <>
Soumis le : jeudi 1 décembre 2016 - 09:47:55
Dernière modification le : mardi 3 juillet 2018 - 11:43:43
Document(s) archivé(s) le : mardi 21 mars 2017 - 10:01:10

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Frédéric Guillou, Romaric Gaudel, Philippe Preux. Sequential Collaborative Ranking Using (No-)Click Implicit Feedback. The 23rd International Conference on Neural Information Processing (ICONIP'16), Oct 2016, Kyoto, Japan. 9948, pp.288 - 296, 2016, Lecture Notes in Computer Science. 〈10.1007/978-3-319-46672-9_33〉. 〈hal-01406338〉

Partager

Métriques

Consultations de la notice

244

Téléchargements de fichiers

120