Algorithm and knowledge engineering for the TSPTW problem

Abstract : In this paper we consider knowledge and algorithm engineering in combinatorial optimization for improved solving of complex TSPs with Time Windows. In addition to Nested MonteCarlo Search with Policy Adaption, as invented by Rosin (2011) and applied to TSP by Cazenave and Teytaud (2012), among other refinements to speed-up the exploration we perform beam search for an improved compromise of search breadth and depth and automated knowledge elicitation to seed the distribution for the exploration. We show promising results on TSPTW benchmarks and indicate improvements for real-world logistics scenarios by using a multiagent simulation system with each agent computing and trading their individual TSPTW solutions
Type de document :
Communication dans un congrès
IEEE Symposium on Computational Intelligence in Scheduling (CISched), Apr 2013, Singapour, Singapore. pp.44 - 51, 2013, 〈10.1109/SCIS.2013.6613251〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01406484
Contributeur : Fabien Teytaud <>
Soumis le : jeudi 1 décembre 2016 - 11:45:00
Dernière modification le : jeudi 11 janvier 2018 - 06:17:30
Document(s) archivé(s) le : jeudi 23 mars 2017 - 00:00:29

Fichier

tsptw.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

PSL

Citation

Stefan Edelkamp, Max Gath, Tristan Cazenave, Fabien Teytaud. Algorithm and knowledge engineering for the TSPTW problem. IEEE Symposium on Computational Intelligence in Scheduling (CISched), Apr 2013, Singapour, Singapore. pp.44 - 51, 2013, 〈10.1109/SCIS.2013.6613251〉. 〈hal-01406484〉

Partager

Métriques

Consultations de la notice

68

Téléchargements de fichiers

63