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ABSTRACT

By analogy with software product reuse, the ability to reuse
(meta)models and model transformations is key to achieve
better quality and productivity. To this end, various op-
portunistic reuse techniques have been developed, such as
higher-order transformations, metamodel adaptation, and
model types. However, in contrast to software product de-
velopment that has moved to systematic reuse by adopting
(model-driven) software product lines, we are not quite there
yet for modelling languages, missing economies of scope and
automation opportunities. Our vision is to transpose the
product line paradigm at the metamodel level, where reusable
assets are formed by metamodel and transformation frag-
ments and “products” are reusable language building blocks
(model types). We introduce featured model types to con-
cisely model variability amongst metamodelling elements,
enabling configuration, automated analysis, and derivation
of tailored model types. We provide a wish list of software
engineering activities to work with featured model types.

CCS Concepts

eSoftware and its engineering — Model-driven soft-
ware engineering; Domain specific languages; Soft-
ware product lines;

Keywords
Model Typing, Metamodelling, Reuse

1. INTRODUCTION

Model-Driven Engineering (MDE), and in particular the
area of Domain-Specific Modelling Languages (DsMLs), leads
language designers to capture the language’s concepts in
metamodels. Models, representing particular instances of
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metamodels, can then be manipulated through transforma-
tions to perform translations to other languages, analyses
(e.g., static semantics checking, or semantic correctness),
evolution (refactorings, etc.) or queries (e.g., metrics or view
extraction).

Yet as a DSML evolves, all the associated transformations
need to evolve accordingly. Given the amount of effort that
can be put into transformation design, reuse is indispens-
able. Research on transformation reuse engendered many
interesting techniques, that can be roughly sorted in two
categories. The first category focusses on adapting the trans-
formations themselves: refactoring of model transformations
(e.g. [36]), higher-order transformations ( [41]), model trans-
formations “lifting” so that they can be applied on all the
products of a product line [35] by changing their execu-
tion semantics. The second category reuses transformations
without changing their internals, by acting on the model el-
ements to which these model transformations apply: Sen et
al. extract the concepts used by a model transformation and
adapt the target metamodel to match those concepts [38],
Cuadrado et al. defines generic model transformations [9],
generalizing model refactorings proposed by Moha et al. [26].
Genericity is obtained via the definition of templates [10],
concept metamodels [9] or model types [39], abstract struc-
tures that can be matched against actual target metamodels.
There are also hybrid approaches that mixes the two cate-
gories, e.g., to deal with heterogeneous metamodels [11].

As surveyed by Kusel et al. [22], transformation reuse
approaches can be further categorized along three dimen-
sions: the transformation’s genericity , its scope (intra/inter-
metamodel), and its granularity (large/small parts of the
transformation implementation). Picking up a particular
combination on these dimensions provides different scenar-
ios for reuse. The authors conclude that despite the large
variety of mechanisms, transformations are reused oppor-
tunistically, and on a small scale. Three issues, identified by
the authors, are independent of the transformation language
used for expressing transformations:

11 — Insufficient abstraction from metamodels, meaning that
MDE lacks standard hierarchies of metamodels and
transformations;

12 — Missing repositories for selection, meaning that repos-
itories of reusable artefacts, both at a fine-grained and
coarse-grained level for transformation, are missing for



supporting large-scale transformation reuse;

I3 — Lack of meta-information for selection, meaning that
it is difficult to reuse transformations as is without
knowing their internals, which can be overcome by pro-
viding appropriate meta-information.

In this paper, we form the vision that adopting the soft-
ware product line paradigm at the language engineering level
is a promising way to overcome these barriers. Software
Product Lines (SpLs) [31] promote the systematic reuse of
software assets belonging to a given domain. They do so
by carefully managing the assets base, providing compact
representations (feature diagrams [20]) of the commonali-
ties and variabilities amongst products derivable from this
asset base, and (semi)-automated combination of these as-
sets in a product based on the selection its user relevant
characteristics (features). SPL engineering distinguishes the
construction and the management of the assets (Domain En-
gineering, or DE) and the building of products on top of the
assets infrastructure (Application Engineering, AE). Trans-
posing the SPL paradigm for MDE means that the assets
base is formed by reusable metamodel and model transfor-
mation fragments and the “products” are DsSMLs building
blocks. As a long-term goal, engineers should be able to
derive new DSMLs the same way we configure our cars and
clothes on the Internet today.

To this end, we introduce the notion of Featured Model
Types (FMTs). This structure can be seen as a kind of meta-
model that integrates the variability of a whole family of
metamodels in the same place, as well as a catalog of associ-
ated transformations applicable depending on certain combi-
nations of features. Therefore, a FMT provides an abstract
and compact way to describe metamodel hierarchies (ad-
dressing I1). Explicit variability modelling amongst meta-
modelling elements allows reuse both at the coarse-grained
and fine grained level, thus providing incentives to manage
repositories of specialised domain assets (tackling 12). Vari-
ability models can serve to engineer user-friendly configu-
ration interfaces [6], allowing language engineers to express
their needs in a simple but consistent way, through formal
reasoning on the FMT (I8). Once choices enacted, tailored
model types can be automatically derived [29,30] prior to
their matching and alignment on target metamodels (or use
as anew DSML). Thus, our vision does not try to invent new
reuse mechanisms but rather encompasses existing ones in
a systematic product line development paradigm for meta-
models, expecting the same successes this paradigm achieved
at the model/code level.

We start by presenting the necessary background on Model
Type and Feature Diagrams in Section 2. Then, Section 3
defines our notion of Featured Model Type. Section 4 pro-
vide our FMTs operations wish list. Section 5 discusses re-
lated approaches and finally, Section 6 wraps up the paper.

2. BACKGROUND

2.1 Model Type

A Domain-Specific Modelling Language (DSML) captures
the knowledge of an expertise domain through high-level
concepts closer to what experts manipulate in a daily basis,
rather than constructions tailored to a particular technical
solution. By trading generality for specificity, a DsML al-
lows a higher level of automation: usually, transformations

are associated with the DsML definition to analyse, verify
and validate it, test instances, translate them into appropri-
ate formats, or extract relevant information, such as metrics
or views [23], thus simplifying the daily manipulation of in-
stances. By nature, a DSML is built for a limited audience;
however, many DsMLs are often specified independently of
each other, although they share many basic concepts, but
are syntactically incompatible. As a consequence, the asso-
ciated transformations are also redefined for each particular
purpose, thus hindering their reuse. As depicted in Fig-
ure 1, the issue is sometimes purely syntactic: metamodels
can use different names for the same concepts, or topolog-
ically arrange them differently, or add details irrelevant for
some manipulations (e.g., semantic details wrt. syntactic
transformations). Generally, a model can conform to only
one metamodel, the one used to build it.

The notion of Model Type circumvents these limitations:
certain metamodels are considered as type, to which client
metamodels have to be realigned in order to reuse the asso-
ciated transformations.

DEFINITION 1 (MoODEL TYPE). A model type MT € T
is a triplet MT = (Name, MM, T) where Name is the (model)
type name, MM is a MoOF-compliant [28] metamodel, and T
1s the set of associated transformations (defined as a MOF-
like operation: name, return type and typed parameters).

The transformations ti,...,t, € T are specified with the
vocabulary defined in MM: the concepts and the naviga-
tion necessary for specifying the building blocks of trans-
formations (either rules in graph-based transformations; or
statements and expressions in meta-programmed transfor-
mations). Following the metamodel-based approach, a client
metamodel MM’ that needs to reuse t; has to be aligned (also
called adaptation in [15]) to MM, i.e. MM’ has to be trans-
formed in order to match MM in its vocabulary (i.e., class
and class properties’ names) and topology (i.e. how classes
are connected), so that ti can be used on models complying
to MM’. This compares to multi-sorted algebras: to reuse
operations associated with a sort, a term needs to prove that
it belongs to that sort [8].

The transformations associated with an MT usually rely
on the the operations defined inside the classes of the meta-
model. These operations can, in turn, be shared among
some of the transformations, leading to so-called intra-level
reuse [22]. However, this granularity is currently not well
organised. In particular, operations have to precisely spec-
ify which structural elements they use from the MT, so that
sharing them and reusing them among transformations can
be performed in a safe way. Several techniques, mostly based
on static discovery of metamodel footprints are already avail-
able for that purpose [18].

2.2 Feature Diagrams

Feature Diagrams, (FDs) introduced by Kang et al. [20],
compactly and abstractly represent commonalities and vari-
abilities of all the members of an SPL in terms of features:
some of them are common to all products but some of them
are only shared by few products. Each SPL member is thus
uniquely identified by a combination of features. An FD
organises features in a taxonomy, graphically depicted as a
tree-like structure, in which the selection of leaf features im-
plies the inclusion of their parents and sibling selection is
controlled by operators. FDs can be formalised [37] to ease



b .

‘ State b ‘ Transition |,

(a) Base metamodel FSM.

Transition

(c) An FsMm with a different topology.

4 Graph ',.A

. :

‘ Vertex |, ‘ Edge |,

(b) Graph-Based representation of an Fsm.

FSM g
accept()

[ite )
1.* e
curren; State | Transition |.
‘ Final b

(d) Extension of the FSM metamodel with execution details.

Figure 1: Variations on the FSM DsML: (a) Base Metamodel (for simplifying the metamodels, references between State and
Transition are omitted here and in the remainder of the paper); (b) Variation on the concepts’ names (Vertex and Edge instead
of State and Transition); (c) Different topology (State, instead of FSM in (a), contains Transition); (d) Additional details for

execution purpose.

reasoning about the whole SPL [5] and to support derivation
techniques [29, 30].

DEFINITION 2 (FEATURE DIAGRAM [37]). A feature di-
agram FD € F is a quadruplet FD = (N, P, A\, DE, ¢) where
N is a set of nodes and P C N a set of primitive nodes, and
with a distinguished root node r € N, DE C N x N a set of
(directed) decomposition edges (noted classically n1 — na
iff (n1,n2) € DE), and ¢ a set of boolean formule over N
expressing constraints. The function A: N — NT labels each
node with an n-ary boolean operator op,, € NT that indi-
cates through which operator child nodes are related to their
parent. FD is well-formed iff the graph represented by FD is
acyclic and only possesses one root (i.e. the top-level entry
node) and the arity of each operator op,, is respected.

The node type set NT includes the typical operators en-
countered in classical feature diagrams notations (cf. [37]).
A configuration c¢ is a set of (selected) primitive nodes (i.e.
¢ € p(P), where p is the powerset operator). FD thus in-
duces sets of configurations (i.e. elements of p(p(P))). The
semantics of an F'D is the set of configurations in which each
member satisfies the following conditions: the root is se-
lected; the selected nodes should have their operators eval-
uate to true.

A graphical representation of an FD can be found in Fig-
ure 2. From the root feature r, we notice its 3 optional
(lollipop) children, h,x,t. The requires graphical constraints
mandates that each time t is chosen x will be too.

3. FEATURED MODEL TYPES

This section proposes a new representation of MT arti-
facts, called Featured Model Type (FMT), for representing
both the structural and the transformational artifacts vari-
ations. F'MTs are intended as a compact representation that
provides better performance for a large variety of analyses,
that expresses choices for new, alternate MTs or transforma-
tion reuses. This section defines FMTs and illustrates how
they can used to easily derive new MT from a configuration.

An FMT basically consists of an annotated metamodel:
this metamodel contains all structural variants of the defin-
ing metamodels in the model type family, and each of its

elements is annotated by a boolean feature expression de-
scribing which product(s) will map to this model element.

DEFINITION 3 (FEATURED MODEL TYPE). A Featured
Model Type FMT € FT is a tuple FMT = (Name, MM, FD, T,
) where (Name, MM, T) € T is a model type, FD € F is
a feature diagram and p: MElement U T — B(N,A,V, =) a
partial function mapping metamodel elements (classes, op-
erations and class properties) and FMT transformations to
a boolean formule over the node set N of FD.

Figure 2 depicts an FMT for the Finite State Machines (FsMs)
domain. The name FMT_FSM appears in the first compart-
ment. The second compartment contains the metamodel ele-
ments present in each F'sM variant. The fourth one contains
the associated transformations. All together, they form a
valid MT. A core metamodel, in black (with a root con-
tainer FSM containing States and Transitions — Note we
omitted associations between them to enhance readability),
is progressively extended to represent three other variants.
In orange, relevant elements are added in order to deal with
executability: a new transformation accept becomes avail-
able, which is defined using new concepts: the current State
maintained during computation, which starts in Initial states
and ends in Final ones. In blue, the time dimension becomes
available within States, exhibiting two associated transfor-
mations: wecet for computing worst-case execution times;
and accept. Note that accept is syntactically different from
the previous one, thus using different transformation units.
Finally in green, nested States become available for repre-
senting hierarchical FsMms that can eventually be flattened.
The third compartment describes an FD for the struc-
tural elements, and each transformation is associated with
the relevant features (r is the root; x, t and h represent
respectively executability, time and hierarchical variants of
the Fsm). The mapping function p annotates each meta-
model element in MMgyt rsm (including FMT transforma-
tions) with a boolean expression indicating whether those
features need these metamodel elements or not, i.e. meta-
model elements should be present for a given feature (colors
were used in Figure 2 instead of annotations to ease read-

ing).
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Figure 2: An FMT for the Finite State Machine domain:
executability, hierarchy and time concerns.

Reuse at the intra-level granularity [22], i.e. at a finer
grain than transformations (rules sets in graph transforma-
tions; operations like fireable in metaprogrammed transfor-
mations, used to specify accept), is achieved with the very
same mechanism: features decorate those fine-grained arti-
facts, describing their inter-relationships and the way they
integrate within transformations through constraints. Typ-
ically, a transformation will require the operations / rules it
uses, which in turns will reference the structural elements in
the metamodel they need. For building an FMT at this fine-
grained level, we can rely on static analysis techniques for
computing call graphs and transformation footprints [18].

Once an FMT is built for a specific domain, like the Fsm
in our example, it becomes possible to derive a minimal, yet
complete metamodel suitable for reusing designated trans-
formations. Figure 3 shows such a metamodel, for a config-
uration composed of flatten and accept. Since the derived
metamodel also includes the core ingredients of an Fsm, the
derivation mechanism also includes minimize as a candidate
transformation for reuse. Fine-grained operations could also
be returned, assuming the FMT includes them.

4. WORKING WITH FMT — A WISH-LIST

This section presents a wish list of the main operations
needed in FMTs environments to enable systematic reuse.
For each operation, we provide a description as well as the
advances and challenges involved in its realization. The first
two operations focus on domain engineering or how to create
an operational FMT infrastructure, while the last four tar-
get application engineering or how to exploit FMT to derive
tailored model types.

4.1 Building FMTs

Purpose A central task is to elaborate FMTs. A manual
building is a first possible solution. As we illustrated in

T_xHFSM

FSM >~

current

accept(word:String):Boolean
flatten():HFSM
minimize():FSM

Figure 3: Derived FMT based on selecting transformations
flatten() and accept().

Section 3, we can start from an MT (that will form the
root of the FMT) and incrementally add metamodel elements
and transformations to support variants. This scenario is
relevant when we want to build a family of model types from
the onset. Yet, as for SPLs, this is rarely the case. Indeed,
reuse opportunities are often discovered when there is a set
of related existing products we want to reuse from. In that
case, we need to transition from a set of “clone” metamodels
toan FMT. A clone management framework offers primitives
like findFeatures, same?, or merge [34]. These primitives can
assist domain engineers in the synthesis of FMTs. Model-
driven Product line synthesis [24] is also to be considered
here.

Challenges Manual construction of FMTs is error-prone: it
is easy to forget a constraint at the FmT level, or boolean for-
mulae can be wrongly specified. The possible consequence is
to obtain an unsound or incomplete FMT, hindering a proper
derivation or analysis. We should therefore provide FmT
synthesis primitives (computing features and their depen-
dencies, merging similar metamodel elements, etc.). These
primitives have to guarantee correct by construction FMTs,
relying on validation operations (see below). Another chal-
lenge is the evolution of FMTs: how do we integrate new
elements in an existing FMT? Several strategies can be as-
sessed such as offering these elements, tagged by one unique
feature, in a mutually exclusive form first. Progressively,
these elements will be annotated with other features en-
abling finer-grained reuse. Our FMT proposal currently con-
siders transformations as atomic, a final challenge is to ex-
tend FMTs to transformation internals, in a similar way to
what is proposed by Striiber et al. [40].

4.2 Validating FMTs

Purpose At any step of the FMT lifecycle, domain engi-
neering validation activities are required. A common check
we want to perform is to ensure that there is no combina-
tion of model transformations that can lead to an inconsis-
tent MT. Some inconsistencies, as mentioned earlier, are
structural: conflicting names, references with incompatible
multiplicities, or attributes with different types. Some oth-
ers are related to transformation semantics: what does it
mean to execute accept on a T_xHFSM, since accept is not
intended to handle nested states? As for SPL, the goal is
to take advantage of commonalities and variabilities to save
on the analysis effort by avoiding to enumerate any possible
M, since the number of possibilities grows exponentially
with the number of features. Késtner et al. proposed in [21]
a technique called variability-aware typechecking, to deal
with structural inconsistencies. Regarding semantics incon-



sistencies, depending on the nature of the transformation
language, either variability-aware verification [7] or combi-
natorial interaction testing approaches [19] may be adapted
to that task.

Challenges All family-based analyses can be affected by
scalability issues. We believe that FMT typechecking is fea-
sible on such a large scale, since Késtner et al. [21] validated
their technique on large code bases. For semantic issues, all
will depend on the granularity of the verification. For com-
plex transformations, developing a suite of reusable tests, to
be run during application engineering, may be complemen-
tary.

4.3 Configure a new MT product

Purpose This operation aims at assisting the user for se-
lecting the appropriate fragments suitable for his needs. As
available from the FmTs, the user can either select transfor-
mations he knows he will have to reuse, or structural frag-
ments from MT that capture the concepts of his language.

Challenges Similarly to PL configuration, several design
choices appear when building configurators based on FMTs.
When a configuration is complete, i.e. all features have been
resolved, it only remains to check for the configuration’s va-
lidity. However, a configuration may be only partial, because
the user is not sure which choices to select for certain fea-
tures, or because some choices are left open for exploration
purposes. Presenting the remaining unresolved features in a
useful way for helping the user to actually perform the de-
sired transformations can be challenging. On another hand,
a configurator can be designed in a guided way, pruning
choices that become impossible when new features are se-
lected, or designed in a more permissive way (e.g., for ex-
pert users), but bundled with stronger analysis capabilities
for checking configurations at the end of the process. It is
an open issue to know which scheme works best for FMTs,
and there are chances that it is application-specific (or de-
pends on the engineer expertise). In all cases, adequately
documenting transformations and MTs is a key enabler for
performing meaningful choices, as already noticed by Kusel
et al. [22].

4.4 Derive an MT product from a configura-
tion

Purpose From a validated configuration, it is important
to be able to derive a product. In our case, the product
corresponds to an MT, to which the user has to align his
metamodel in order to reuse the associated transformations.

Challenges When several FMTs already exist for the do-
mains targeted by the user, deriving a product consists in
simply reusing the existing technology for software product
lines, except that products are in this context FMmTs, i.e.
metamodels accompanied with transformations.

For example, Figure 3 shows a derived FMT, obtained from
selecting the flatten() and accept() transformations: the de-
rived MT shows metamodel elements that do not appear
within the original MTs. The user has then to align his
client metamodel with the obtained MT in order to be able
to fully reuse the selected transformations. Several tech-
niques already exist for that purpose, e.g. based on standard
languages like OcL [12].

4.5 Validate an MT Product

Purpose Once the MT has been derived, there may remain
individual validation operations to perform, which are too
complex to be assessed for all possible MT at the domain en-
gineering level. This can be the case for ensuring that every
transformation of the newly build MT works as intended by
their specifications. Depending of the model transformation
nature (model-to-model, model-to-text) verification [3] and
testing techniques [14] may also be applied for an individual
MT product.

Challenges Naturally, we do not expect verification prop-
erties and tests to be rewritten for each derived MT, but to
reuse them. This raises the challenge of defining such val-
idation artifacts on FMT, i.e. envisioning all the semantics
variations a transformation may support when used with dif-
ferent combination of features. If these artifacts existed prior
to the inclusion of the transformation in an FMT, then lifting
might be an option [35]. Another question that arises is the
validation of generic FMT test suites. Techniques such as
mutation analysis [27] may also need to be lifted to the FMT
formalism. As mentioned by Kusel et al. [22] we may still
need to write “integration tests” (i.e., detecting unexpected
interactions amongst model transformation) for a derived
Mr.

4.6 MT Matching and Customization

Purpose Once derived and validated, the MT product is
ready to be used on concrete metamodels. If the MT is de-
rived from a complete configuration, all choices have been
resolved and existing matching techniques apply [15,39]. De-
pending on the context, transformations’ semantics, more or
less strict matching relationships between the derived MT
product and target metamodel may be enforced.

Challenges Challenges arise when: (i) the configuration is
partial (in that case, derived product still contains some un-
resolved features, technically being an FMT) or (i) further
customization is required on the model type, for example to
support unexpected model elements or/and transformation.
Answering to (i) involves revisiting exiting matching rela-
tionships to cover the presence of variability. The second
challenge requires the customization is done in a disciplined
way [29], by defining additional constraints on the derived
MT [46], possibly inherited from FMT, to ensure that the
customization does not break the derive MT properties and
transformation semantics.

5. RELATED WORK

Model Types were initially introduced by Steel [39], and
the notion was further explored by Guy et al. [15] and Degueu-
le et al. [13]. It fully exploits the characteristics of MOF, and
has therefore no equivalent in Graph-Based Model Transfor-
mations. Zschaler [46] proposed an unified representation of
model types based on constraints. This paper proposes to
enrich MTs with variability (features) in order to manage
an MT hierarchy. Variability for metamodels has already
been explored in [30]. Techniques were presented to weave
variability in metamodel constructs. The goal was to add
more flexibility in the usage of a given metamodel. In our
approach we aim to manage a set of existing metamodels.
Our vision also encompasses the consistent management of
transformations associated with MTs.



Several contributions applied variability management to
programming or modelling languages: Vacchi et al. [42] for
reverse engineering techniques with Neverlang, a modular
language implementation framework; Cengarle et al. for de-
scribing variations of a base language in MontiCore; or Hau-
gen et al. [16] for modelling possible variations in DSMLs in
CvL (Common Variability Language); or White et al. [43]
for improving reusability of features among a language fam-
ily, among others. Our vision proposes an explicit, concise
formalism for FMTs for managing a family of languages (or
metamodels); a potential target language can be Clafer [4,
16], a metamodelling language mixing features and classes.

Inferring product lines models has already been studied [2,
17,24, 25,32, 33,42, 44, 45]. Holthusen et al. [17] propose
to mine a so-called family model for function block dia-
grams. Martinez et al. propose feature mining and visu-
alization techniques for managing variability of model vari-
ants [25]. Rubin and Chechik propose to combine related
product (models) into product lines (models annotated with
presence conditions) [32,33]. For example, it is possible to
infer from UML models a product line representation. In
their case, all input models are instances of the same meta-
model. Hence their approach does not consider the inference
(or synthesis) of families of languages. Zhang et al. describe
comparison techniques to synthesize model-based product
lines [44] as CVL models [16]. An extension to augment
product lines and thus to support the incremental synthesis
of product lines is subsequently proposed in [45]. The spe-
cific problem of synthesising FMT from a set of input meta-
models has not been explored so far and remains a challenge
(see Section 4.1).

Salay et al. propose to make applicable transformations
defined on individual products on the whole product line,
by changing the execution semantics of the transformation
(defined in terms of rewriting rules) [35]. In our work, we
aim to have a catalog of transformations that can be applied
to any "product” metamodel.

6. CONCLUSION

In this paper, we described a vision in which model types
should be engineered as families rather than independently.
We introduced the formal notion of featured model type to
this end and exhibited how techniques originally developed
in the SPL community can be applied to FMT to provide
automated support for model type derivation depending on
architectural / behavioural concerns as well as family-wise
analyses. We first plan to realise our vision using DSML
frameworks such as Clafer [4], MELANGE [13], and/or Fa-
MILIAR [1] to specify FMT. The next item on the research
agenda concerns the semi-automated synthesis of FMT from
a collection of existing artifacts. Finally we will also investi-
gate type-checking and consistency analyses at the FMT level
to guarantee certain properties on derived model types.
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