On sets determining the differential spectrum of mappings

Abstract : The differential uniformity of a mapping $F : F 2 n → F 2 n$ is defined as the maximum number of solutions $x$ for equations $F (x+a)+F (x) = b$ when $a ̸ = 0$ and $b$ run over $F 2 n$. In this paper we study the question whether it is possible to determine the differential uniformity of a mapping by considering not all elements $a ̸ = 0$, but only those from a special proper subset of $F 2 n \ {0}$. We show that the answer is " yes " , when $F$ has differential uniformity 2, that is if $F$ is APN. In this case it is enough to take $a ̸ = 0$ on a hyperplane in $F 2 n$. Further we show that also for a large family of mappings F of a special shape, it is enough to consider a from a suitable multiplicative subgroup of $F 2 n$ .
Type de document :
Article dans une revue
International journal of information and Coding Theory, 2017, 4 (2/3), pp.170--184. 〈10.1504/IJICOT.2017.083844〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01406589
Contributeur : Pascale Charpin <>
Soumis le : jeudi 1 décembre 2016 - 13:07:37
Dernière modification le : mercredi 13 décembre 2017 - 13:47:53
Document(s) archivé(s) le : mardi 21 mars 2017 - 08:29:19

Fichier

Charpin-Kyureghyan-16.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Pascale Charpin, Gohar M. Kyureghyan. On sets determining the differential spectrum of mappings. International journal of information and Coding Theory, 2017, 4 (2/3), pp.170--184. 〈10.1504/IJICOT.2017.083844〉. 〈hal-01406589〉

Partager

Métriques

Consultations de la notice

148

Téléchargements de fichiers

68