A Separability Marker Based on High-Dimensional Statistics for Classification Confidence Assessment

Abstract : This work provides a theoretical analysis framework for features that belong to the high dimensional Riemannian manifold of symmetric positive definite matrices. In non-invasive EEG-based Brain Computer Interfaces, such as the P300 speller, these are sample covariance matrices of the epoched EEG signal that are classified into two classes. An analysis of the class shape on the manifold is performed, and the separability level of the two classes is evaluated. The main contribution is the Separability Marker (SM)-confidence method, a method that appends a confidence marker to the prediction of a binary classifier whose decision function is based on the comparison of Riemannian distances.
Type de document :
Communication dans un congrès
IEEE International Conference on Systems, Man, and Cybernetics , Oct 2016, Budapest, Hungary. 〈http://smc2016.org/〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01407759
Contributeur : Nathalie Thérèse Hélène Gayraud <>
Soumis le : vendredi 2 décembre 2016 - 15:02:42
Dernière modification le : jeudi 11 janvier 2018 - 16:47:54
Document(s) archivé(s) le : mardi 21 mars 2017 - 05:01:33

Fichier

SMC_gayraud_foy_clerc.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01407759, version 1

Collections

Citation

Nathalie Gayraud, Nathanael Foy, Maureen Clerc. A Separability Marker Based on High-Dimensional Statistics for Classification Confidence Assessment. IEEE International Conference on Systems, Man, and Cybernetics , Oct 2016, Budapest, Hungary. 〈http://smc2016.org/〉. 〈hal-01407759〉

Partager

Métriques

Consultations de la notice

835

Téléchargements de fichiers

71