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Abstract—QC-MDPC-McEliece is a recent variant of the
McEliece encryption scheme which enjoys relatively small key
sizes as well as a security reduction to hard problems of
coding theory. Furthermore, it remains secure against a quantum
adversary and is very well suited to low cost implementations on
embedded devices.

Decoding MDPC codes is achieved with the (iterative) bit
flipping algorithm, as for LDPC codes. Variable time decoders
might leak some information on the code structure (that is on
the sparse parity check equations) and must be avoided. A
constant time decoder is easy to emulate, but its running time
depends on the worst case rather than on the average case. So far
implementations were focused on minimizing the average cost.
We show that the tuning of the algorithm is not the same to
reduce the maximal number of iterations as for reducing the
average cost. This provides some indications on how to engineer
the QC-MDPC-McEliece scheme to resist a timing side-channel
attack.

I. INTRODUCTION

With the advance of quantum computing, efficient algo-
rithms against number theory based cryptosystems [1] have
become a threat that cannot be neglected. There is a need
to develop post-quantum cryptosystems, that is cryptosystems
which remain secure against an adversary equipped with a
quantum computer.

Among all possible techniques for post-quantum cryptosys-
tems we found code-based cryptography and in particular
the McEliece public-key encryption scheme [2]. The original
McEliece scheme uses (randomly permuted) binary Goppa
codes and so far has resisted all cryptanalytic attempts even
from quantum adversaries. The security is twofold and re-
lies on two assumptions, the hardness of generic decoding,
the message security, and the pseudorandomness of Goppa
codes, the key security. Generic decoding is NP-complete
[3] and is also believed to be hard on average. Though
the pseudorandomness of Goppa codes has not been studied
as thoroughly as generic decoding, no efficient algorithm is
known to distinguish a random matrix from a generator matrix
of a Goppa code, except when the code rate is close to one [4],
a case which is not a threat against the McEliece encryption
scheme.
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One of the drawback of code-based public-key schemes is
that they require large public keys (a generator matrix of the
code). Gaborit proposed to use quasi-cyclic codes [5] to solve
that problem. As demonstrated in [6], the use of quasi-cyclic
codes does not significantly change the security reduction.
However, the key security, which essentially requires that the
public key (a generator matrix) does not leak information
on the algebraic structure, is more problematic, and quasi-
cyclic codes with algebraic structure may sometimes have
vulnerabilities [7].

In 2013, the use of quasi-cyclic MDPC (Moderate Density
Parity Check) codes was suggested to instantiate the McEliece
scheme in [8]. This version of McEliece enjoys relatively
small key sizes (a few thousand bits) and its security provably
reduces to the hardness of deciding whether a given quasi-
cyclic code contains a word of small weight or not. Moreover,
the decryption essentially consists in decoding and can be
achieved with the same iterative algorithms as for LDPC
codes. In particular, a low cost implementation, suitable for
embedded systems, can be achieved using a hard decision bit
flipping iterative algorithm, as demonstrated in [9].
Our contributions. In this paper we will further examine the
decoding of MDPC codes. The bit flipping decoding algorithm
involves a threshold which can be chosen in many different
ways and which may change along the iterations of a given
decoding instance. A series of paper [9], [10], [11] are focused
on how to choose the threshold in order to reduce the average
number of iterations to successfully decode a given number of
errors. However, if an adversary is able to measure, through
a side-channel, the number of iterations of the decoder, he
might be able to deduce some information on the secret key
(the sparse parity check matrix). That is to say, for instance,
by submitting properly chosen noisy codewords to the decoder
and observing the decoder behavior for each of them.

Such an attack can be countered by designing a constant
time decoder. In the present case this means adding fake
iterations until we reach a prescribed number of iterations.
This number will be chosen such that stopping the decoding
process at this point ensures a negligible probability of failure.
In other words, we wish to optimize the decoder behavior
in the worst case rather than in the average case in order to
minimize the decoding cost.

The main observation of this paper is that minimizing



the average cost leads to significantly different algorithms
than minimizing the worst case. Using a heuristic approach
we have determined a variant of the bit flipping algorithm
which favors the worst case for a particular set of parameters.
Combined with intensive simulation, it allows us to provide
some guidelines for the engineering of QC-MDPC-McEliece
decryption aiming to resist to above mentioned timing attacks.
It also allows us to understand how to choose the parameters
of both the system and the decoding algorithm such that the
probability of decoding failure remains negligible.

II. PRELIMINARIES

F2 denotes the field with two elements, wt() denotes the
Hamming weight.

A. Moderate Density Parity Check Codes

The Moderate Density Parity Check (MDPC) code construc-
tion is very similar to the LDPC code’s one. They both are
binary linear codes defined by a sparse parity check matrix H
and only differ on the sparseness of this matrix. For MDPC
codes, the parity check matrix row weight w is much larger
than for LDPC codes, typically w = O(

√
n). We denote

(n, r, w)-MDPC, a MDPC code of length n, codimension r
whose sparse parity check matrix has a row weight w.

Definition 1. A square matrix is said circulant if its rows are
the successive cyclic shifts of its first one.

A linear code is quasi-cyclic (QC) if its generator or parity
check matrix is composed of circulant blocks.

Though the parameters are flexible, all instances of QC-
MDPC-McEliece proposed in [8] use codes of rate 1/2. For
the sake of simplicity, we will do the same in the rest of
this paper and consider QC-MDPC codes with two (circulant)
blocks, H = [H0 | H1] ∈ Fr×n

2 .

B. McEliece Cryptosystem Using (QC-)MDPC Codes

Let t denotes the number of errors which can be corrected
by a bit flipping iterative decoder of an (n, r, w)-MDPC code
with n = 2r. Typically, we expect that tw = O(n) and
thus as w = O(

√
n), we obtain t = O(

√
n). The McEliece

cryptosystem instantiated with (QC-)MDPC codes works as
follow.

1) Key Generation. Generate a (two) block circulant parity
check matrix H = [H0 | H1] ∈ Fr×n

2 with rows of weight
w and such that H1 is invertible. Compute its associated
generator matrix G = [I | (H−1

1 H0)
T ] ∈ F(n−r)×n

2 in
systematic form. The public key is G and the private key
is H .

2) Encryption. Let m ∈ Fn−r
2 be the plaintext. Generate a

random vector e ∈ Fn
2 such that wt(e) = t. The ciphertext

is c = mG+ e ∈ Fn
2 .

3) Decryption. Decode the ciphertext c to get a codeword
mG. The plaintext is obtained by truncating the first n−r
bits of that codeword.

C. Security Assessment

Note that using LDPC codes for the McEliece scheme is
deemed to be unsafe [12]. However increasing the parity check
matrix density appears to have a positive effect in that respect.

1) Reduction: One of the strong feature of QC-MDPC-
McEliece is its security reduction. Following [6], the system
remains secure as long as:

(i) Decoding t errors in a QC [n, n− r] binary linear code
is hard.

(ii) Deciding whether the code spanned by some block
circulant r × n matrix (orthogonal to the public key)
has minimum distance ≤ w is hard.

Both of these problems are NP-hard in the non cyclic case
[3], [13]. Their exact status is unknown in the circulant case,
however there is a consensus to say that cyclicity alone will not
make the problem easy. Note that the situation is very similar
to lattice-based cryptography: nobody believes that the cyclic
or “ring” versions of the generic lattice problems are easy,
even though there is no completeness results.

2) Practical Security: In practice, the best known attacks
are all based on information set decoding and its variants [14],
[15], [16], [17], [18], either for decoding t errors in the code
spanned by the public key or for finding words of weight w
in its dual. Details can be found in [8], but typical sizes are:

• (n, r, w, t) = (9602, 4801, 90, 84) for 80 bits of security
• (n, r, w, t) = (19714, 9857, 142, 134) for 128 bits of

security
using a (n, r, w)-QC-MDPC code correcting t errors (S bits
of security means that all known attacks cost ≥ 2S elementary
operations).

III. DECODING QC-MDPC CODES

A. Decoding Algorithm

It is proposed in [19] to use a hard decision decoder derived
from the bit flipping algorithm introduced by Gallager [20]
(originally used as a LDPC decoder) to decode QC-MDPC
when used to instantiate the McEliece cryptosystem. In fact,
any LDPC decoding algorithms from [20] can be used as
MDPC decoder as long as the error correction capability
matches with the chosen parameters. Note that the solution
proposed in [19] has a slightly lower capability compared to
the original algorithm from [20]. However, the error rates used
in practice to instantiate the McEliece cryptosystem are lower
than those required in information theory. For instance, to
obtain 80-bits of security, the parameters from [8] ensures
an error rate around 0.87 102. This algorithm seems well
dedicated when implementing the cryptosystem in a constraint
environment because it uses simple and fast operations. Ac-
tually, it already exists several embedded implementations of
the cryptosystem. In [10], von Maurich and Güneysu achieved
a very lightweight implementation of the McEliece scheme
using QC-MDPC codes and a very high speed implementation
of several decoding algorithms for QC-MDPC codes are
proposed in [9].



The bit flipping algorithm is sketched in Figure 1. When H
is sparse enough and x is close enough to the code of parity
check matrix H , the algorithm returns the closest codeword
to x. The algorithm performance depends on the choice of b’s
value.

Input: H ∈ Fr×n
2 , x ∈ Fn

2

s← xHT . Compute the syndrome
while s 6= 0 do

for i ∈ {0, . . . , n− 1} do
σi ← 〈s, hi〉 ∈ Z . Compute the i-th counter
if σi ≥ b then

xi ← xi ⊕ 1 . Flip the corresponding bit
end if

end for
s← xHT . Update the syndrome

end while
return x

hi denotes the i-th column of H .
The i-th counter σi is the number of unsatisfied parity
check equations involving the position i.
The threshold b ∈ N depends of the iteration level, it
may be precomputed or it may be computed somehow
for each particular instance.

Fig. 1: Bit flipping algorithm

In Gallager’s original bit flipping algorithm, one threshold
value per iteration is precomputed. The formulas used to com-
pute these thresholds guarantee some probability of decoding
failure. This solution can be used to decode QC-MDPC codes
but there is no certainty regarding the probability of a decoding
failure.

Another solution proposed in [19] is to flip only bits that
violate the maximum number of parity check equations, up to
a few units.

In [9] several other tunings were proposed in order to speed
up the average running time of the algorithm. Instead of using
the same syndrome s for all positions while an iteration, they
proposed to update the syndrome after each bit flip.

B. Security Against Timing Attacks

This algorithm is iterative and probabilistic, so we have
to consider two problems. First, the fact that the number of
iterations of the algorithm depends on both the error pattern
and the parity check matrix, may leak some information about
the secret key and thus may lead to a successful timing attack.
For the moment, such attack is unknown, but to avoid it
we suggest to set the number of iterations of the algorithm
regardless of the instance. This number has to be large
enough to ensure a negligible decoding failure probability.
These decoding failures are the second problem to investigate.
Somehow, a non zero probability of decoding failure may also
reveal information about the secret key. Obviously, considering
a decoding failure as a decoding instance which require more

iteration or an infinite number of iteration, goes back to the
first problem. That is to say, protecting the cryptosystem
against timing attack.

In practice, the average number of iterations to decode
most of the errors is very low, typically around 3 for a
(9602, 4801, 90)-MDPC code correcting 84 errors. However,
a few error patterns require much more iterations to be fully
corrected. We will refer to these patterns as worst cases for
the decoding algorithm. By abuse of language, we will refer
to the maximum number of iterations instead of the number
of iterations observed in these worst cases.

Thus, our goal is to tune the algorithm to minimize the
maximum number of iteration rather than the average number
of iterations and to find the better trade-off between overall
running time and security.

C. Tuning the Decoder

We wish to find the best rules to tune the decoder, that is
to say the best rules for computing the threshold. Moreover,
we want to keep a low cost decoding procedure. Therefore the
threshold computation may only involve data which is easily
obtained in the regular execution of the bit flipping algorithm:
the counter (number of unsatisfied parity check equations) for
each position, the syndrome (and also its weight), the number
of flipped bits at each iteration, . . .

In the next section, we describe our approach to optimize
the threshold choice.

IV. MINIMIZING THE NUMBER OF ITERATIONS FOR THE
WORST CASES

A. Approach

As explained in the previous section, we want to minimize
the maximum number of iterations of the decoding algorithm
in order to set this value for each decoding instance. In
section III-A, we have highlighted that this algorithm relies
on the counter values for each position of the error vector, to
decide whether the position is considered as correct or wrong.
Therefore, the threshold used to make a decision is of main
importance. Obviously, it has a direct impact on the number of
iterations needed: if the threshold is too high, just a few errors
will be corrected at each iterations, and if the threshold is too
low, the risk is to flip more correct bits (but whose neighbors
are false) than wrong bits.

In order to minimize the maximal number of iterations, we
propose to benefit from information available while decoding
in order to avoid extra operations. As shown above, only
few values are computed during any of the iteration: the
syndrome (and its weight), the number of unsatisfied parity
check equations for each position and the number of flipped
bits. The syndrome weight appears to be a more relevant
information about how well the decoding is processed, because
it only depends on the error vector and the parity check
matrix. Furthermore, one can note that the sum of the number
of unsatisfied parity check equations is proportional to the
syndrome weight. Thus, our idea was to take advantage of this
information to adjust the threshold value for each iteration and



each instance, and decrease the maximum number of iteration
required.

Our approach was to investigate a large amount of decoding
traces (for each iteration, we stored the value of: the error
weight, the syndrome weight, the number of flipped bit, . . . )
and to analyze instances requiring the highest number of
iterations. Then, we tried to decrease this number for these
worst cases by adapting the value of thresholds.

Our task was to obtain a global optimization, which was
in fact much more challenging than trying to minimize the
error weight one iteration at a time. It appears that the best
solution was not necessarily the obvious one: it can happen
that decreasing the number of corrected bits in the first
iterations, also decrease the error weight at the last iteration.
Furthermore, it reveals that the behavior of the worst cases
cannot be well predicted using the weight of the syndrome, the
number of unsatisfied parity check equation for each position
or the number of flipped bits. Still, these information helped
us to analyze the decoding process.

The result of these investigations is that computing the
thresholds as a function of the syndrome weight, regardless to
the current iteration, seems to be the better solution to achieve
the lowest maximum number of iterations.

B. Results

The Figure 2 shows the step function used to compute the
threshold according to the syndrome weight that appears to be
the best choice in order to decrease the maximum number of
iterations.

Fig. 2: Computation of the threshold values as a function of
the syndrome weight for (9602, 4801, 90)-QC-MDPC codes
in order to correct up to 84 errors.

As mentioned in [11], the minimal average number of
iteration is achieved by updating the syndrome after each bit
flip and by using precomputed thresholds. However, it is also
noticed that the higher performance decoding algorithm can

diverge for some particular instances. That is to say, some
error patterns cannot be decoded at all, and a second decoding
attempt has to be done, using different threshold values. This
does not affect much the average running time of decoding
but does not permit the design of a (reasonable) constant time
decoder.

We compare in Table I the behavior of our worst case
decoder and the most efficient (on average) algorithm from
[9].

Iteration This work [9] algorithm
2 0.187 10−5 0.536
3 0.768 0.462
4 0.231 0.145 10−2

5 0.408 10−3 0.201 10−3

6 0.321 10−5 0.152 10−5

7 0.150 10−6 0.200 10−7

∞1 0 0.948 10−5

TABLE I: Proportion of errors patterns which are decoded in a
fixed number of iterations. We are comparing the result of our
work and the new algorithm from [9] which used precomputed
thresholds and abort iteration when the syndrome becomes
zero. We used (9602, 4801, 90)-QC-MDPC codes and errors
of weight 84. The simulations were made over 1000 codes
with 105 error patterns per code for our work and 500 codes
with 105 error patterns per code for the algorithm from [9]

Note that, we do not find cases of divergence using our de-
coding technique. These results suggest that the adjustment of
the threshold improves the worst case decoding but decreases
the efficiency of the algorithm for average cases. However,
our goal was to minimize the maximum number of iterations,
which is 7 for these parameters and not to speed up the
average running time of the decoder. Although we did not find
instances which are not decoded after the 7th iterations, we
cannot guarantee the decoding failure probability to be zero.
Hence, it is probably safer to fix the number of iterations to 8
or 9 on practice. An other viable solution could be to slightly
increase the length and the dimension of the code, keeping the
same code rate and the same values for w and t. This would
improve the overall efficiency of the decoder.

V. CONCLUSION

Obtaining a constant time decoder for QC-MDPC is a
safeguard against timing attacks on the QC-MDPC-McEliece
scheme. We show here that the best constant-time decoder
requires a specific tuning of the bit flipping algorithm which
relies on the syndrome weight. A limitation of our approach is
that a significant effort is needed to find the optimal threshold
rule for every set of code parameters. We think however our
work gives a serious hint on how to find the thresholds for
others code parameters.

Finding theoretical bounds or estimates of the decoding
failure probability seems to be a challenging task, but for
cryptographic purpose, it could be of interest to reduce that
probability to a very small amount, say 2−128, with some kind

1Proportion of errors which cannot be decoded.



of guarantee. We hope that our preliminary work could open
the way to such an achievement.
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