
HAL Id: hal-01408649
https://hal.inria.fr/hal-01408649

Submitted on 14 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transfinite Step-Indexing: Decoupling Concrete and
Logical Steps

Kasper Svendsen, Filip Sieczkowski, Lars Birkedal

To cite this version:
Kasper Svendsen, Filip Sieczkowski, Lars Birkedal. Transfinite Step-Indexing: Decoupling Concrete
and Logical Steps. 25th European Symposium on Programming Languages and Systems, Dec 2016,
Eindhoven, Netherlands. pp.727 - 751, �10.1007/978-3-662-49498-1_28�. �hal-01408649�

https://hal.inria.fr/hal-01408649
https://hal.archives-ouvertes.fr

Transfinite Step-indexing:
Decoupling Concrete and Logical Steps

Kasper Svendsen1, Filip Sieczkowski2, and Lars Birkedal3

1 University of Cambridge, ks775@cl.cam.ac.uk
2 INRIA, filip.sieczkowski@inria.fr
3 Aarhus University, birkedal@cs.au.dk

Abstract. Step-indexing has proven to be a powerful technique for
defining logical relations for languages with advanced type systems and
models of expressive program logics. In both cases, the model is stratified
using natural numbers to solve a recursive equation that has no naive
solutions. As a result of this stratification, current models require that
each unfolding of the recursive equation – each logical step – must
coincide with a concrete reduction step. This tight coupling is problematic
for applications where the number of logical steps cannot be statically
bounded.
In this paper we demonstrate that this tight coupling between logical
and concrete steps is artificial and show how to loosen it using transfinite
step-indexing. We present a logical relation that supports an arbitrary
but finite number of logical steps for each concrete step.

1 Introduction

Step-indexing has proven to be a powerful technique for defining models of
advanced type systems [5, 2, 6, 11, 10] and expressive higher-order program logics
[16, 4, 20, 18]. To support abstraction, such type systems and program logics often
feature some notion of impredicative invariants. For instance, a reference type
can be seen as an invariant about the type of values stored at a given location;
for languages with general references this is an impredicative invariant.

Modelling impredicative invariants is difficult and a naive approach naturally
leads to a circular definition with no solution. To illustrate, consider modelling
a language with general references. A natural idea is to interpret types relative
to a world (heap typing) that assigns semantic types to all currently allocated
locations. The reference type, τ ref, can then be interpreted as the set of locations
mapped to JτK in the current world. A world is a finite function from locations
to types. Unfortunately, this idea leads to a circular definition of the semantic
domain of types that has no solution in set theory:

Type ∼= World
mon→ P(Val) World = Loc

fin
⇀ Type

To break this circularity, step-indexed models interpret inhabitance of a type as
a predicate indexed by the number of steps left “on the clock”. This allows for

a well-founded definition over the steps, by “going down a step” whenever an
impredicative invariant is unfolded. We refer to these as logical steps. Since refer-
ence types require an unfolding of an impredicative invariant, the interpretation
of reference types introduces a logical step: a location l is an inhabitant of type
τ ref with n+ 1 steps left on the clock, if location l contains a value that is an
inhabitant of type τ with n steps left on the clock.

To use this artificially stratified model, current step-indexed models take the
steps to be concrete reduction steps in the underlying operational semantics. An
expression e is thus an inhabitant of type τ with n steps left on the clock, if
whenever it reduces to e′ in i < n concrete reduction steps, then e′ is an inhabitant
of τ with n− i steps left on the clock. As a consequence, each logical step must
be associated with a corresponding reduction step.

This suffices to prove many interesting properties. For instance, to prove
type soundness of the typing rule for dereference, we have to prove that !l is an
inhabitant of τ for n steps, assuming l is an inhabitant of τ ref for n steps. Since
!l uses one concrete reduction step, it suffices to know that location l contains a
value that is an inhabitant of τ for n − 1 steps. Conceptually, the logical step
of unfolding the invariant always happens together with the concrete step of
dereferencing the location and the proof goes through. Unfortunately, this is
not always the case. For instance, higher-order abstractions often introduce new
logical steps without introducing corresponding concrete steps [18].

This is most easily illustrated in the setting of binary logical relations. To
prove that e1 logically approximates e2, Γ |= e1 ≤log e2 : τ , current step-indexed
logical relations require that each logical step must be associated with a reduction
step of e1. Let τ denote the type

∃α. (1→ α)× (α→ N)

and f : τ → τ denote the following function

λx : τ. unpack x as (α, y) in pack (α ref , (λz : 1. ref (fst y z), λz : α. snd y (!z)))

The function f takes a τ ADT and returns a new one that wraps instances of
the ADT in an additional reference. One might hope to be able to prove that
x : τ |= x ∼=log f(x) and thus that the ADT returned by f is contextually equiva-
lent to its argument. However, as far as we are aware, no current step-indexed
logical relations offer a practical way of proving the left-to-right approximation,
x : τ |= x ≤log f(x).1 The additional indirection through the heap forces us to
introduce an invariant for each instance of the two ADTs we create. To relate the
two instances we must unfold this invariant. Unfortunately, there is no reduction
step on the left to justify this unfolding.

1 There are step-indexed logical relations, which are complete wrt. contextual approx-
imation [15], which would seem to suggest that they should be flexible enough to
prove this example, but completeness is achieved using biorthogonality (a kind of
closure under evaluation contexts), which means that while the models are technically
complete, they do not offer a practical way of proving this kind of example; cf. the
discussion in Section 10 of [15].

Similar problems plague step-indexed program logics, where higher-order
abstractions that introduce new logical steps without any corresponding concrete
steps are more common. For instance, deriving a new simpler specification for
a specific way of using a concurrent data structure from an abstract library
specification often introduces a new invariant without introducing any new
concrete reduction steps [20, 18]. See [18, Section 8] for a concrete example of this
problem in the context of step-indexed program logics. Existing step-indexing
program logics have dealt with this issue by adding additional skip statements,
to allow new logical steps to be related to skip reduction steps [14, 18]. Not only
is this solution semantically unsatisfying, it is also insufficient for examples where
the number of logical unfoldings cannot be statically bounded.

Conceptually, the problem with earlier models is the artificial link made
between unfoldings of the recursive domain equation (logical steps) and concrete
reduction steps. In this paper we propose a refinement of step-indexing that
relaxes this link, by allowing an arbitrary but finite number of logical steps for
each concrete reduction step. To achieve this, we stratify the construction of the
semantic domain using ω2, or N× N ordered lexicographically, instead of ω. We
then take the first step index to be concrete reduction steps in the underlying
operational semantics and the second step index to be the number of logical
steps possible before the next concrete reduction step. The lexicographic ordering
ensures that we can pick an arbitrary but finite number of possible logical steps
until the next concrete reduction step, after each concrete reduction step.

Instead of presenting a transfinitely step-indexed model of our latest and
greatest program logic, we focus on a logical relation. Such a setting is simpler,
thus allowing us to present our solution in greater detail and concentrate on the
problem of decoupling logical and concrete steps. We develop a general theory
for stratifying the construction of semantic domains using step-indexing over
ω2. This theory also applies to semantic domains used in recent step-indexed
program logics and we believe our approach to decoupling logical and concrete
steps also extends to these program logics.

Our main contribution is conceptual: we demonstrate how transfinite step-
indexing allows us to loosen the artificial link between concrete and logical steps
in step-indexed models. As a technical contribution, we extend previous results
for stratifying recursive definitions using step-indexing over ω to the transfinite
case of ω2.

We have included proof sketches of the main results in the article. Full proofs
can be found in the accompanying technical report, which is available at the
following address: http://www.kasv.dk/transfinite-tr.pdf.

Outline. First we introduce the syntax and operational semantics of a simple
higher-order language in Section 2. In Section 3 we show how to stratify the
construction of semantic domains using step-indexing over ω2 and recall some
mathematical concepts for working with these domains. Next, we apply this
theory to define a transfinitely step-indexed logical relation in Section 4. In
Section 5 we return to the example mentioned above and prove the troublesome
contextual equivalence using our transfinitely step-indexed logical relation. We

τ, σ ::= 1 | N | τ × σ | τ → σ | τ ref | ∃α. τ | α
v ∈ Val ::= ∗ | n | (v1, v2) | fix f(x). e | l | pack v
e ∈ Exp ::= ∗ | n | (e1, e2) | fst e | snd e | fix f(x). e | e1 e2

| l | ! e | e1 := e2 | ref e | pack e | unpack e1 as x in e2

Fig. 1. Types, values and expressions.

defer most discussions of related work to Section 6. Finally, in Section 7 we
conclude and discuss future work.

2 Syntax and operational semantics

In Figure 1 we define the syntax of a higher-order functional language with
general references and existential types. This set of language features and type
system suffices to study the problems mentioned in the Introduction. We assume
countably infinite and disjoint sets of type variables, term variables and locations,
with α ranging over type variables and x over term variables and l over locations.
We use a Curry-style presentation and thus do not annotate λ-abstractions or
pack/unpack with types. The typing rules have the form ∆;Γ ` e : τ , where ∆ is
a context of type variables and Γ is a context of term variables. The well-formed
type judgment, ∆ ` τ expresses that all free type variables in τ are bound in ∆.
Figure 2 includes an excerpt of typing rules; the remaining rules are standard
and have been omitted.

∆;Γ ` e : τ ref

∆;Γ ` ! e : τ

∆;Γ ` e1 : τ ref ∆;Γ ` e2 : τ

∆;Γ ` e1 := e2 : 1

∆;Γ ` e : τ

∆;Γ ` ref e : τ ref

∆;Γ ` e1 : ∃α. τ ∆, α;Γ, x : α ` e2 : σ ∆ ` σ
∆;Γ ` unpack e1 as x in e2 : σ

Fig. 2. Excerpt of typing rules.

Note that our type system does not include store typings, assigning types to
locations. Store typings are typically used to facilitate syntactic progress and
preservation proofs. However, they are unnecessary for our semantic approach
and we only consider source programs that do not contain location constants.

The operational semantics is defined as a small-step reduction relation between
configurations consisting of an expression e and a heap h: 〈e, h〉 → 〈e′, h′〉. A
heap is a finite map from locations to values. Figure 3 includes an excerpt of
the reduction rules; the rest of the rules are standard. Note that dereferencing
or assigning to a location that has not already been allocated results in a stuck
configuration. It will follow from our logical relation that well-typed programs

never get stuck and thus never try to dereference a location that has not been
allocated.

From the small-step reduction semantics we define a step-indexed reduction
relation, 〈e, h〉 →n 〈e′, h′〉, which expresses that 〈e, h〉 reduces in n steps to
〈e′, h′〉. We count every reduction step. Note that while our step-indexed logical
relation will be indexed using ω2, the operational semantics is still only indexed
over ω, as is standard in step-indexed models. We use 〈e, h〉 →∗ 〈e′, h′〉 to denote
the reflexive transitive closure of the small-step reduction relation.

h ∈ Heap
def
= Loc

fin
⇀ Val

K ∈ ECtx ::= • | (K, e) | (v,K) | fst K | snd K | K e | v K
| !K | K := e | v := K | ref K | pack K | unpack K as x in e

C ∈ Ctx ::= • | (C, e) | (e, C) | fst C | snd C | C e | e C | !C | C := e | e := C | ref C
| pack C | unpack C as x in e | unpack e as x in C

EvalRead
l ∈ dom(h)

〈! l, h〉 → 〈h(l), h〉

EvalWrite
l ∈ dom(h)

〈l := v, h〉 → 〈∗, h[l 7→ v]〉

EvalAlloc
l 6∈ dom(h)

〈ref v, h〉 → 〈l, h[l 7→ v]〉

EvalUnpack

〈unpack (pack v) as x in e, h〉 → 〈e[v/x], h〉

EvalCtx
〈e, h〉 → 〈e′, h′〉

〈K[e], h〉 → 〈K[e′], h′〉

〈e, h〉 →0 〈e, h〉
〈e, h〉 → 〈e′, h′〉 〈e′, h′〉 →n 〈e′′, h′′〉

〈e, h〉 →n+1 〈e′′, h′′〉

Fig. 3. Excerpt of reduction rules.

Our formal definition of contextual approximation is given in Definition 1
below. We say that eI contextually approximates eS if for any closing context C
of unit type, if C[eI] terminates with value ∗, then C[eS] terminates with value ∗.
Since well-typed expressions do not contain any location constants, we can simply
reduce C[eI] and C[eS] with an empty heap. The C : (∆;Γ, τ) (∆′;Γ ′, τ ′)
relation expresses that context C takes a term e such that ∆;Γ ` e : τ to a term
C[e] such that ∆′;Γ ′ ` C[e] : τ ′. The rules for C : (∆;Γ, τ) (∆′;Γ ′, τ ′) are
standard and have been omitted.

Definition 1 (Contextual approximation) If ∆;Γ ` eI : τ and ∆;Γ ` eS :
τ , then eI contextually approximates eS, written ∆;Γ ` eI ≤ctx eS : τ iff,

∀C : (∆;Γ, τ) (−;−, 1).

∀hI ∈ Heap. 〈C[eI], []〉 →∗ 〈∗, hI〉 ⇒ ∃hS ∈ Heap. 〈C[eS], []〉 →∗ 〈∗, hS〉.

We refer to eI in ∆;Γ ` eI ≤ eS : τ as the left expression or implementation and
we refer to eS as the right expression or specification. Contextual equivalence,

∆;Γ ` e1 ∼=ctx e2 : τ , is then defined as the conjunction of left-to-right contextual
approximation and right-to-left contextual approximation.

3 Step-indexing over ω2

Step-indexing is often used to solve the recursive definitions of semantic domains
that arise when modelling impredicative invariants. Due to a contravariant
occurrence of the recursive variable, these definitions have no solution in set-
theory. Instead, step-indexing is used to stratify the construction. In this section
we present a general theory for stratifying the construction of semantic domains
using step-indexing over ω2.

The idea is to define the semantic domain as a fixed point of a suitably
contractive functor over a category of step-indexed sets. For instance, recall
the type-world circularity from the Introduction. Instead of solving the original
equation, we wish to solve the following equation in a category of step-indexed
sets:

Type ∼= I((Loc
fin
⇀ Type)

mon→ UPred(Val))

Here the later operator (I) ensures that we “go down a step” when unfolding
the recursive definition. Intuitively, this ensures that Type at step-index i is only
defined in terms of Type at strictly smaller step-indices, j < i, and thus that the
equation has a solution. Since the result needs to be a step-indexed set, we have
also replaced predicates over values (P(Val)) with its step-indexed counterpart:
uniform predicates over values (UPred(Val)).

For step-indexing over ω one can apply general existence theorems for fixed
points of locally contractive functors on the category of ω set-indexed sets.
Birkedal, Støvring and Thamsborg [12] have generalized the inverse-limit con-
struction to show the existence of fixed points of locally contractive functors over
categories where the Hom-sets can be equipped with a suitable metric structure.
This existence theorem is directly applicable to the category of ω step-indexed
sets. Unfortunately, the results do not apply to the category of ω2 step-indexed
sets. Intuitively, the inverse limit construction is not iterated far enough for
step-indexing over ω2.

In this section we define a category of ω2 step-indexed sets, U , and give a
concrete construction for fixed-points of locally contractive functors on U . While
the results for step-indexing over ω2 are novel, the structure of the development is
not and follows existing work. To simplify the exposition we use Di Gianantonio
and Miculan’s complete ordered families of equivalences [13] to present the
category of step-indexed sets and avoid the use of abstract category theory.

Complete ordered families of equivalences. Ordered families of equivalences (o.f.e.)
over ω2 are pairs consisting of a set X and a family of equivalence relations on X,
indexed by ω2. The intuition to keep in mind is that the (n,m)-th equivalence

relation,
n,m
= , expresses equality on the underlying set when there is n,m steps left

“on the clock”. A priori, these steps are purely artificial to break the circularity,
however, in the following section we will relate the first step-index n with concrete

reduction steps. We will thus think of
n,m
= as equality on the underlying set, with

n concrete reduction steps left and m logical steps left before the next concrete
reduction step. We use a lexicographic ordering on ω2:

(n1,m1) ≤ (n2,m2)
def
= (n1 = n2 ∧m1 ≤ m2) ∨ n1 < n2

Thus, every time we take one concrete reduction step, we will be able to chose an
arbitrary finite number of logical steps that we may do before the next concrete
reduction step.

Another intuition to keep in mind is that two elements are (n,m)-equivalent
if the elements cannot distinguished with n concrete reduction steps left and m
logical steps before the next concrete step. Since fewer observations are possible
as the number of steps decreases, we require the equivalence to become coarser
as the number of steps is decreased. With no reduction steps left no observations
are possible and every element is indistinguishable. We thus require that the
equivalence is the total relation at the last step index, (0, 0). Lastly, we require
that if two elements are indistinguishable for any number of steps, they are
identical.

Definition 2 (Ordered families of equivalences over ω2) An ordered fam-

ily of equivalence relations (o.f.e.) over ω2 is a pair (X, (
a
=)a∈ω2), consisting of a

set X and an ω2-indexed set of equivalence relations
a
=, satisfying

– ∀x, y ∈ X. x 0,0
= y

– ∀x, y ∈ X. ∀a, b ∈ ω2. a ≤ b ∧ x b
= y ⇒ x

a
= y

– ∀x, y ∈ X. (∀a ∈ ω2. x
a
= y)⇒ x = y

The function space between two ordered families of equivalences consists of
non-expansive functions that map a-equivalent arguments to a-equivalent results.
Intuitively, non-expansiveness of f ensures that it takes at least the same number
of steps to distinguish f(x1) from f(x2) as it takes to distinguish x1 from x2.
Similarly, a function f is contractive if it is strictly harder to distinguish f(x1)
from f(x2) than it is to distinguish x1 from x2, i.e., if to show that the results are
a-equivalent it suffices that the arguments are equivalent at all strictly smaller
indices. Contractive functions are thus necessarily non-expansive.

Definition 3 (Non-expansive and contractive functions) Let X = (X, (
a
=X

)a∈ω2) and Y = (Y, (
a
=Y)a∈ω2) be ordered families of equivalences. A function

f : X → Y is non-expansive iff

∀x1, x2 ∈ X. ∀a ∈ ω2. x1
a
=X x2 ⇒ f(x1)

a
=Y f(x2)

and contractive iff

∀x1, x2 ∈ X. ∀a ∈ ω2. (∀b ∈ ω2. b < a⇒ x1
b
=X x2)⇒ f(x1)

a
=Y f(x2).

By iterating a contractive function, we get a sequence of elements that require
more and more steps to distinguish. For complete ordered families of equivalences,
where all such sequences have limits, we can define a unique fixed point of the
contractive function as a suitable limit. When step-indexing over ω it suffices to
iterate a contractive function f up to ω:

∗, f(∗), f2(∗), ...

as the fixed point x1 of f is simply the limit of the above sequence. For step-
indexing over ω2 we have to continue the sequence further, taking the limit of
all the previous elements at each limit index (n, 0) and iterating f over these
intermediate limits:

∗, f(∗), f2(∗), ..., x1, f(x1), f2(x1), ..., x2, f(x2), f2(x2), ...

Here xi is the limit of all the previous elements. The fixed point is then the limit
of this extended “sequence”.

Definition 4 (Limits) Let (X, (
a
=)a∈ω2) be an ordered family of equivalences

and Y a subset of ω2. A Y -indexed family (xy)y∈Y is coherent iff ∀a, b ∈ Y. a ≤
b⇒ xa

a
= xb and x is a limit of (xy)y∈Y iff ∀a ∈ Y. x a

= xa.

Note that limits of coherent families indexed by proper subsets of ω2 are not
necessarily unique. For such coherent families we thus additionally require suitably
unique chosen limits.

Definition 5 (Chosen limits) Let (X, (
a
=)a∈ω2) be an ordered family of equiv-

alences. Then (X, (
a
=)a∈ω2) has chosen limits iff any b ∈ ω2 there exists a function

lima<b xa that maps a coherent family (xa)a<b indexed by {a ∈ ω2 | a < b} to
a limit, such that for any two coherent families (xa)a<b and (ya)a<b indexed by
{a ∈ ω2 | a < b},

(∀a < b. xa
a
= ya)⇒ lim

a<b
xa = lim

a<b
ya

Definition 6 (Complete ordered families of equivalences) A complete or-
dered family of equivalences (c.o.f.e) is an o.f.e. X such that all ω2-indexed
coherent families in X have limits and X has chosen limits.

Lemma 1 (Banach’s fixed point theorem) Let X = (X, (
a
=)a∈ω2) be a com-

plete ordered family of equivalences and f : X → X a contractive function. If X
is inhabited (i.e., there exists an x ∈ X), then f has a unique fixed point.

Complete ordered families of equivalences over ω2 form a category, U , with
non-expansive functions as morphisms. We will use this category to define our
semantic domains. To do so, we first introduce a few basic c.o.f.e. constructions
followed by a general existence theorem for solutions of recursive domain equations
in U .

Definition 7 Let U denote the category of complete ordered families of equiv-
alences. The objects of U are complete ordered families of equivalences and the
morphisms are non-expansive functions.

Basic constructions. The set of non-expansive functions between two c.o.f.e.s
forms a c.o.f.e., by lifting the equivalence on the co-domain and computing limits
point-wise. Restricting the function space further to finite partial non-expansive
functions also yields a c.o.f.e.

Lemma 2 Let X = (X, (
a
=X)a∈ω2) and Y = (Y, (

a
=Y)a∈ω2) be complete ordered

families of equivalences. Then X →ne Y and X fin
⇀ Y are complete ordered families

of equivalences, where

X →ne Y
def
= ({f : X → Y | f is non-expansive}, (a=X→Y)a∈ω2)

X fin
⇀ Y def

= ({f : X
fin
⇀ Y | f is non-expansive}, (a=

X fin
⇀Y

)a∈ω2)

and

f
a
=X→Y g iff ∀x ∈ X. f(x)

a
=Y g(x)

f
a
=
X fin
⇀Y

g iff dom(f) = dom(g) ∧ ∀x ∈ dom(f). f(x)
a
=Y g(x)

Likewise, restricting the non-expansive function space to monotone and non-
expansive functions also yields a c.o.f.e. if the partial order on the codomain
respects limits in the codomain.

Lemma 3 Let X = (X, (
a
=X)a∈ω2) be an ordered family of equivalences, Y =

(Y, (
a
=Y)a∈ω2) be complete ordered families of equivalences and ≤X and ≤Y be

partial orders on X and Y .
If for any two coherent families (xa)a∈ω2 and (ya)a∈ω2

∀a ∈ ω2. xa ≤Y ya ⇒ lim
a
xa ≤Y lim

a
ya

and for any b ∈ ω2 and any two coherent families (xa)a<b and (ya)a<b

∀a < b. aa ≤Y ya ⇒ lim
a<b

xa ≤Y lim
a<b

ya

then X mon→ Y is a complete ordered family of equivalences, where

X mon→ Y def
= ({f : X

mon→ Y | f is non-expansive}, (a=X→Y)a∈ω2)

We can model a predicate over a set X as a predicate over ω2×X, downwards-
closed in the step index. The intuition is that (n,m, x) ∈ p if x satisfies the
step-indexed predicate p with n,m steps left on the clock. The downwards-closure
captures the intuition that it takes a certain number of steps to show that x does
not satisfy a given predicate. These predicates form a c.o.f.e., where we consider
two predicates n,m equivalent if they agree for all step-indices strictly below
n,m.

Definition 8 (Uniform predicates, UPred(X)) Let X be a set. Then

UPred(X) = (P↓(ω2 ×X), (
a
=)a∈ω2)

is a c.o.f.e., where

p
a
= q iff bpca = bqca, bpca

def
= {(b, x) ∈ p | b < a}

and the ordering on ω2 ×X is: (a1, x1) ≤ (a2, x2) iff a1 ≤ a2 and x1 = x2.

Solving recursive domain equations in U . Banach’s fixed point theorem (Lemma 1)
allows us to show existence of recursively-defined elements of complete ordered
families of equivalences. To show existence of recursively-defined complete ordered
families of equivalences, we lift the fixed point theorem from contractive functions
on complete ordered families of equivalences to locally contractive functors on the
category of complete ordered families of equivalences. The fixed point theorem is
stated for mixed-variance functors, F : Uop × U → U , where the negative and
positive occurrences of the recursive variable have been separated.

Definition 9 (Locally non-expansive and locally contractive functor) A
bi-functor F : Uop × U → U is locally non-expansive iff

∀X ,X ′,Y,Y ′ ∈ obj(U). ∀f, f ′ : HomU (X ,X ′). ∀g, g′ : HomU (Y ′,Y).

∀a ∈ ω2. f
a
= f ′ ∧ g a

= g′ ⇒ F (f, g)
a
= F (f ′, g′)

and locally contractive iff

∀X ,X ′,Y,Y ′ ∈ obj(U). ∀f, f ′ : HomU (X ,X ′). ∀g, g′ : HomU (Y ′,Y).

∀a ∈ ω2. (∀b ∈ ω2. b < a⇒ f
b
= f ′ ∧ g b

= g′)⇒ F (f, g)
a
= F (f ′, g′)

In both cases, the equality on the Hom-set is the point-wise lifting of the equality
on the co-domain (i.e., f

a
= f ′ iff ∀x ∈ X. f(x)

a
= f ′(x)).

Theorem 1 If F : Uop × U → U is a locally contractive bi-functor and F (1, 1)
is inhabited, then there exists an object X ∈ U such that F (X,X) ∼= X ∈ U .

Proof (Sketch). The construction of the fixed point uses an inverse-limit con-
struction. However, as for Banach’s fixed point theorem, when step-indexing
over ω2 we have to iterate the construction further and repeat the inverse-limit
construction.

First we show that for any S ∈ U and projection/embedding pair

pS : F (S, S)→ S eS : S → F (S, S)

and step-index n such that pS ◦ eS = idS and eS ◦ pS
n,0
= idF (S,S), we can define

an approximate fixed point, X ∈ U with projection/embedding pair

pX : F (X,X)→ X eX : X → F (X,X)

such that pX ◦ eX = idX and ∀m. eX ◦ pX
n,m
= idF (X,X). This approximate fixed

point is constructed as an inverse-limit.
Next, we iterate this construction to obtain increasingly better approximations

of the fixed point. The real fixed point is then constructed as an inverse limit of
these approximate fixed points. ut

Returning to the recursive equation from the beginning of this Section, we
can reformulate the equation as a fixed point of a bi-functor, by separating the
positive and negative occurrences as follows:

F (X−, X+) ∼= (I ◦G)(X−, X+), G(X−, X+)
def
= (N fin

⇀ X−)
mon→ UPred(Val)

Exponentiation using both the non-expansive monotone function space and
the non-expansive finite partial function space extends to locally non-expansive
bi-functors. The functor G defined above is thus locally non-expansive.

Given a locally non-expansive functor it is possible to define a locally con-
tractive functor by shifting all the equivalence relations one step. The functor
I, defined below, takes a complete ordered family of equivalences and shifts all
the equivalences one step up, such that (n,m)-equivalence becomes (n,m+ 1)-
equivalence. At limits (n + 1, 0) the equivalence is taken to be the limit of all
smaller equivalences.

Definition 10 (I) Let I : U → U denote the following functor,

I
(
X, (

a
=)a∈ω2)

)
def
=
(
X, (

a≡)a∈ω2

)
I(f)

def
= f

where
0,0
≡ is the total relation on X,

n,m+1
≡ is

n,m
= and

n+1,0
≡ is defined as follows

x1
n+1,0
≡ x2 iff ∀m ∈ N. x1

n,m
= x2.

Lemma 4 If F : Uop × U → U is locally non-expansive then I ◦F is locally
contractive.

Using Lemma 4 we can obtain a locally contractive functor from a locally non-
expansive functor, and thus use Theorem 1 to obtain a fixed point. However, as
we will see in the following section, due to the shifting by I, we are forced to
“go down a step” if we want our definitions to remain non-expansive, whenever
we unfold the isomorphism.

4 Logical relation

In this section we define a logical relation step-indexed over ω2 for the language
introduced in Section 2. By only relating the first step-index with concrete
reduction steps, we obtain a logical relation that allows for an arbitrary finite
number of logical steps for each concrete reduction step. We prove that this
logical relation is sound with respect to contextual approximation.

Semantic domains. To model dynamic allocation of references, we use a Kripke
logical relation and index relations with worlds that contain general relational
invariants over the heap. These invariants can themselves assert the existence of
invariants and are thus also world-indexed. This leads to a recursive definition of
the semantic domain of invariants with a contravariant occurrence of the recursive

variable. Consequently, we use Theorem 1 to show the existence of a c.o.f.e. Inv
satisfying the following isomorphism:

ξ : Inv ∼= I((N fin
⇀ Inv)

mon→ UPred(Heap×Heap))) (1)

An invariant is modelled as a uniform relation on heaps, indexed by a world that
is itself a finite map from invariant identifiers (N) to invariants. The monotone

function space is with respect to extension ordering on N fin
⇀ Inv and subset

inclusion on UPred(−). The monotonicity requirement allows us to dynamically
allocate new invariants, without invaliding existing invariants. A type is modelled
as a uniform relation on values indexed by a world:

World
def
= N fin

⇀ Inv Type
def
= World

mon→ UPred(Val×Val)

We use Înv as a shorthand for World→ UPred(Heap×Heap). Note that here
we index worlds by invariant identifiers (N) rather than the physical locations
(Loc) we used in the Introduction. Due to our use of general relational invariants
on heaps, it is no longer necessary to index the world with physical locations.
Instead, we index the world with invariant identifiers which allows us to simplify
the meta-theory by allowing us to refer to individual invariants.

A reference invariant is a particular instance of these general invariants. A

reference invariant, inv(ν, lI , lS) ∈ Înv, for type ν ∈ Type and two locations lI
and lS relates two heaps hI and hS if hI(lI) and hS(lS) are related at type ν:

inv(ν, lI , lS)
def
= λW. {(n,m, hI , hS) | lI ∈ dom(hI) ∧ lS ∈ dom(hS) ∧

(n,m, hI(lI), hS(lS)) ∈ ν(W)}

The more general invariants supported by our model are not necessary to define
the logical relation or prove that it implies contextual approximation. However,
they are very useful when relating two concrete programs directly in the model,
as we will see in Section 5.

Heap satisfaction. To define the relational interpretation of types, we first need
to define heap satisfaction, which expresses when two heaps are related at a given
world. Intuitively, this is the case when the heaps satisfy all the invariants in world.
However, to support local reasoning about invariant satisfaction, we borrow the
idea of ownership from separation logic [19] and require each invariant to hold for
a disjoint part of the heap. Two heaps hI and hS are thus related, if they can be
split into disjoint parts h1I , h2I , ..., hkI and h1S , h2S , ..., hkS , respectively, such
that hjI and hjS are related by the j’th invariant. To simplify the meta-theory
we indexed heap satisfaction, bW cI , with a set of invariant identifiers I ⊆ N
indicating which invariants are active (i.e., currently required to hold).

bW cI
def
= {(n, hI , hS) | (∃rI , rS : dom(W) ∩ I → Heap.

hI =]ι∈dom(rI)rI(ι) ∧ hS =]ι∈dom(rS)rS(ι) ∧
∀ι ∈ dom(W) ∩ I. ∀m ∈ N.

(n− 1,m, rI(ι), rS(ι)) ∈ ξ(W (ι))(W)) ∨ n = 0}

Note that heap satisfaction is only step-indexed using one step-index, n. This
is because heap satisfaction always requires that each hjI and hjS must be
related for an arbitrary number of logical steps m, no matter how many logical
steps are currently left on the clock. This pattern of universally quantifying over
the number of logical steps will reappear in many definitions and is crucial in
allowing us to unfold an arbitrary finite number of invariants for each concrete
reduction step. Intuitively, this bakes in the assumption and proof obligation
that there is always an unbounded number of possible logical steps left before the
next concrete reduction step in all our definitions. Except when we are relating
concrete examples we never commit to an actual number of logical steps.

Since each invariant asserts exclusive ownership of the parts of each heap that
are related by the invariant, we can use I to reason locally about satisfaction of
individual invariants. This is captured by Lemma 5. We use bW c as shorthand
for heap satisfaction in the case where all invariants are active, i.e., bW cdom(W).

Lemma 5 (Invariant locality)

∀W ∈World. ∀hI , hS ∈ Heap. ∀n ∈ N. ∀I1, I2 ∈ P(N).

(n, hI , hS) ∈ bW cI1]I2 ⇔(
∃h1I , h2I , h1S , h2S ∈ Heap. hI = h1I] h2I ∧ hS = h1S] h2S
∧ (n, h1I , h1S) ∈ bW cI1 ∧ (n, h2I , h2S) ∈ bW cI2

)
As expected, two heaps satisfy the heap invariant inv(ν, lI , lS) if and only if hI(lI)
and hS(lS) contain ν-related values (Lemma 6). Note that Lemma 6 requires
that there is at least one concrete reduction step left, even just to prove that lI
and lS are in the domain of hI and hS .

Lemma 6 (Reference invariant satisfaction)

∀n ∈ N. ∀ι ∈ N. ∀W ∈World. ∀ν ∈ Type. ∀hI , hS ∈ Heap. ∀lI , lS ∈ Loc.

n > 0 ∧ ξ(W (ι))
n,0
= inv(ν, lI , lS)⇒(

(n, hI , hS) ∈ bW c{ι} ⇔ lI ∈ dom(hI) ∧ lS ∈ dom(hS) ∧
∀m. (n− 1,m, hI(lI), hS(lS)) ∈ ν(W)

)
To ensure that definitions using heap satisfaction are suitably non-expansive,

we require heap satisfaction to satisfy the following non-expansiveness property
(Lemma 7). Intuitively, this property holds because we “go down” one step index
from n to n− 1 in the definition of heap satisfaction.

Lemma 7

∀W1,W2 ∈World. ∀hI , hS ∈ Heap. ∀n,m ∈ N.

W1
n,m
= World W2 ∧ (n, hI , hS) ∈ bW1c ⇒ (n, hI , hS) ∈ bW2c

Proof (Sketch). Assume that two heap parts h1I and h1S are n− 1,m′ related
at ξ(W1(ι))(W1). By non-expansiveness of ξ it follows that ξ(W1(ι)) is n,m

equivalent to ξ(W2(ι)) in c.o.f.e. I Înv. Since (n− 1,m′ + 1) < (n,m) it follows

that they are also n−1,m′+1 equivalent in c.o.f.e. Înv. Hence, by the equivalence
on uniform predicates, ξ(W1(ι))(W1) and ξ(W2(ι))(W2) agree on all step-indices
strictly below n− 1,m′ + 1. It follows that h1I and h1S are n− 1,m related at
ξ(W2(ι))(W2). ut

Expression closure. The expression closure, E(ν), takes a semantic type ν ∈ Type
and extends it to a relation on expressions. Intuitively, two expressions eI and
eS are related by the expression closure E(ν) if they reduce to ν-related values
and related terminal heaps, whenever they are executed from related initial
heaps. Since the expression closure is where we actually reduce the underlying
expressions, this is also the definition where the steps from the step-indexed
model are tied to concrete reduction steps. The idea is to tie the first step-index
to concrete reduction steps and go down one step in the first step-index for every
concrete reduction step of eI . We define the expression closure, E(ν), as follows,
for a semantic type ν ∈ Type:

E(ν)
def
= λW. {(n, eI , eS) | ∀n′ ≤ n. ∀i < n′. ∀hI , h′I , hS . ∀e′I . ∀W ′ ≥W.

(n′, hI , hS) ∈ bW ′c ∧ 〈eI , hI〉 →i 〈e′I , h′I〉 6→ ⇒
e′I ∈ Val ∧ ∃v′S , h′S . ∃W ′′ ≥W ′.
〈eS , hS〉 →∗ 〈v′S , h′S〉 ∧
(n′ − i, h′I , h′S) ∈ bW ′′c ∧
∀m. (n′ − i,m, e′I , v′S) ∈ ν(W ′′)}

The expression closure is only step-indexed using the first step-index, correspond-
ing to the number of concrete reduction steps. If the two initial heaps are related
for n′ steps and 〈eI , hI〉 reduces in i < n′ steps then the terminal heaps must be
related for n′ − i steps. Like the definition of heap satisfaction, we require the
return values to be related for n′ − i concrete steps and an arbitrary number of
logical steps, m. The reason for requiring i to be strictly smaller than n′, is to
ensure that we have enough concrete steps left to prove that we do not get stuck
trying to dereference a location that has not been allocated. This is due to our
use of general invariants, which requires that we unfold a reference invariant to
prove that two τ ref related locations are currently allocated.

To ensure that the expressions remain related after more invariants have been
allocated, we take initial heaps related in an arbitrary future world W ′. Likewise,
the terminal heaps and return value is related in some future world W ′′, to allow
the allocation of new invariants.

The expression closure further requires that whenever 〈eI , hI〉 reduces to some
irreducible configuration 〈e′I , h′I〉, then e′I is in fact a value. This allows us to
prove that well-typed expressions do not get stuck.

Just like for heap satisfaction, we need the expression closure to satisfy the
following non-expansiveness property (Lemma 8), to ensure that definitions using
the expression closure are suitably non-expansive.

Lemma 8

∀W1,W2 ∈World. ∀ν ∈ Type. ∀n,m ∈ N. ∀eI , eS ∈ Exp.

W1
n,m
= World W2 ∧ (n, eI , eS) ∈ E(ν)(W1)⇒ (n, eI , eS) ∈ E(ν)(W2)

Proof (Sketch). The result follows easily from non-expansiveness of ν, Lemma 7
and the following property that allows an n,m equivalence to be extended to a
future world.

∀W1,W2,W
′
1 ∈World. ∀n,m.

W1
n,m
= World W2 ∧W1 ≤W ′1 ⇒ ∃W ′2 ≥W2. W

′
1
n,m
= World W

′
2

ut

Interpretation. We now have all the ingredients to define the relational interpreta-
tion of types. The relational interpretation of types, VJ∆ ` τK : Type∆ → Type,
is defined by induction on the type well-formedness derivation, ∆ ` τ . It is
parametrized by a function ρ ∈ Type∆ that assigns a semantic type to each
type variable in context ∆. Intuitively, it expresses when two values are related
at a given type at a particular world and step-index. The full definition is given
in Figure 4. The most interesting clauses are the interpretation of function types
and reference types.

For function types, we assume that the arguments are related for an arbitrary
number of logical steps m′, just as we did for heap satisfaction. We also require
the application to be related for one more concrete reduction step than the
arguments. This is standard in step-indexed models and reflects the fact that we
do at least one concrete reduction step (the beta-reduction of the application),
before using the arguments.

The interpretation of reference types asserts the existence of a general in-
variant in the current world that is n,m equivalent to the reference invariant

inv(VJ∆ ` τKρ, lI , lS). Note that the equivalence is stated at the c.o.f.e., I Înv.
In turn, the reference invariant asserts exclusive ownership of locations lI and

lS and that these locations contain VJ∆ ` τKρ related values.
For product types, we require that the components are pair-wise related and

for existential types, we require the existence of a semantic type to interpret the
abstract type.

To show that this logical relation is well-defined, we need to prove that
the reference invariant, inv(VJ∆ ` τKρ, lI , lS) is an element of the right c.o.f.e.,

World
mon→ UPred(Heap × Heap). This reduces to proving that the reference

invariant is non-expansive and monotone in the worlds, which in turn induces
non-expansiveness and monotonicity requirements on VJ∆ ` τKρ.

Lemma 9 The logical relation is well-defined. In particular,

– inv(ν, lI , lS) is non-expansive and monotone and inv(ν, lI , lS)(W) is downwards-
closed for all ν ∈ Type, lI , lS ∈ Loc and W ∈World.

VJ∆ ` 1Kρ(W)
def
= {(n,m, ∗, ∗)}

VJ∆ ` NKρ(W)
def
= {(n,m, k, k) | k ∈ N}

VJ∆ ` τ × σKρ(W)
def
= {(n,m, vI , vS) | ∃v1I , v2I , v1S , v2S .

vI = (v1I , v2I) ∧ vS = (v1S , v2S) ∧
(n,m, v1I , v1S) ∈ VJ∆ ` τKρ(W) ∧
(n,m, v2I , v2S) ∈ VJ∆ ` σKρ(W)}

VJ∆ ` τ → σKρ(W)
def
= {(n,m, vI , vS) | ∀n′ < n. ∀W ′ ≥W. ∀uI , uS .

(∀m′. (n′,m′, uI , uS) ∈ VJ∆ ` τKρ(W ′))

⇒ (n′ + 1, vI uI , vS uS) ∈ E(VJ∆ ` σKρ)(W ′)}

VJ∆ ` τ ref Kρ(W)
def
= {(n,m, lI , lS) | ∃ι ∈ dom(W).

ξ(W (ι))
n,m
= I Înv inv(VJ∆ ` τKρ, lI , lS)}

VJ∆,α ` αKρ(W)
def
= ρ(α)(W)

VJ∆ ` ∃α. τKρ(W)
def
= {(n,m, pack vI , pack vS) | ∃ν ∈ Type.

(n,m, vI , vS) ∈ VJ∆,α ` τKρ[α7→ν](W)}

Fig. 4. Relational interpretation of types.

– VJ∆ ` τKρ is non-expansive and monotone and VJ∆ ` τKρ(W) is downwards-

closed for all ρ ∈ Type∆ and W ∈World.

Proof (Sketch). We prove the second property by induction on the well-formedness
derivation, ∆ ` τ . Most of the cases are straightforward. For reference types,
non-expansiveness follows from Lemma 8. ut

Finally, the logical relation relates two expressions eI and eS at type τ if they
are related for all step-indices in the expression closure of the τ -relation, after
substituting related values for all free term variables.

Definition 11 (Logical relation)

∆;Γ |= eI ≤log eS : τ
def
= ∀n ∈ N. ∀W ∈World. ∀σI , σS ∈ ValΓ . ∀ρ ∈ Type∆.

(∀m ∈ N. ∀(x : τ) ∈ Γ. (n,m, σI(x), σS(x)) ∈ VJ∆ ` τKρ(W))

⇒ (n, σI(eI), σS(eS)) ∈ E(VJ∆ ` τKρ)(W)

The logical relation is compatible with the typing rules of the language.
Here we include two of the interesting cases of the compatibility proof, namely
dereference and unpack. For illustrative purposes we take a more constrained
versions of the lemmas where the arguments of the dereferencing and unpacking
operations are values. The accompanying technical report features complete
proofs of all the compatibility lemmas in their general form.

Lemma 10 If ∆;Γ |= vI ≤log vS : τ ref then ∆;Γ |= ! vI ≤log ! vS : τ .

Proof. We unfold the definition of the logical relation: take n ∈ N, W ∈World,
σI , σS ∈ ValΓ and ρ ∈ Type∆ such that

∀m ∈ N. ∀(x : τ ′) ∈ Γ. (n,m, σI(x), σS(x)) ∈ VJ∆ ` τ ′Kρ(W)

We unfold the definition of expression closure: take n′ ≤ n, i < n′, W ′ ≥W and
hI , h

′
I , hS ∈ Heap such that

(n′, hI , hS) ∈ bW ′c 〈!σI(vI), hI〉 →i 〈e′I , h′I〉 6→

Since σI(vI) and σS(vS) are both values, we can use the assumption to obtain a
world W ′′ ≥W ′ such that (n′, hI , hS) ∈ bW ′′c and

∀m. (n′,m, σI(vI), σS(vS)) ∈ VJ∆ ` τ ref Kρ(W ′′).

By definition of the interpretation of reference types, our values must be locations,
and they must be related by the reference invariant in the world. In other
words, setting m = 0 we get two locations lI and lS and an invariant identifier
ι ∈ dom(W ′′) such that

σI(vI) = lI σS(vS) = lS ξ(W ′′(ι))
n′,0
= I Înv

inv(VJ∆ ` τKρ, lI , lS)

Using Lemma 5 we can obtain parts of hI and hS that satisfy the invariant ι: we
have hιI ⊆ hI and hιS ⊆ hS such that (n′, hιI , h

ι
S) ∈ bW ′′c{ι}. Since 0 ≤ i < n′,

we can now use Lemma 6, which gives us that,

lI ∈ dom(hιI) lS ∈ dom(hιS) ∀m. (n′ − 1,m, hιI(lI), h
ι
S(lS)) ∈ VJ∆ ` τKρ(W ′′)

Now we can establish, by definition of the operational semantics, that i = 1,
e′I = hI(lI) = hιI(lI) and h′I = hI . We are now ready to pick witnesses required
by the expression closure. We pick vS = hS(lS), h′S = hS and use the same world,
W ′′. Clearly, 〈!lS , hS〉 →∗ 〈hS(lS), hS〉 holds trivially and since the heaps did not
change, we get the heap-satisfaction obligation by downwards-closure. Finally,
we need to show that (n′ − 1,m, hI(lI), hS(lS)) ∈ VJ∆ ` τKρ(W ′′) for any m,
which is precisely what we obtained from Lemma 6, since hI(lI) = hιI(lI) and
hS(lS) = hιS(lS). ut

Lemma 11 If ∆;Γ |= vI ≤log vS : ∃α. τ and ∆,α;Γ, x : τ |= eI ≤log eS : σ and
∆ ` σ then

∆;Γ |= unpack vI as x in eI ≤log unpack vS as x in eS : σ

Proof. We unfold the definition of the logical relation: take n ∈ N, W ∈World,
σI , σS ∈ ValΓ and ρ ∈ Type∆ such that

∀m ∈ N. ∀(x : τ ′) ∈ Γ. (n,m, σI(x), σS(x)) ∈ VJ∆ ` τ ′Kρ(W).

We unfold the definition of expression closure: take n′ ≤ n, i < n′, W ′ ≥W and
hI , h

′
I , hS ∈ Heap such that

(n′, hI , hS) ∈ bW ′c 〈unpack σI(vI) as x in σI(eI), hI〉 →i 〈e′I , h′I〉 6→

Since σI(vI) and σS(vS) are both values, we can use the first assumption to
obtain a world W ′′ ≥W ′ such that (n′, hI , hS) ∈ bW ′′c and

∀m. (n′,m, σI(vI), σS(vS)) ∈ VJ∆ ` ∃α. τKρ(W ′′).

We pick m = 0, and obtain, by definition of interpretation of existential types,
two values, v′I and v′S , and ν ∈ Type such that

σI(vI) = pack v′I σS(vS) = pack v′S (n′, 0, v′I , v
′
S) ∈ VJ∆,α ` τKρ[α7→ν](W ′′)

Looking at our reduction, we now observe that i > 0 and

〈unpack σI(vI) as x in σI(eI), hI〉 → 〈(σI(eI))[v′I/x], hI〉 →i−1 〈e′I , h′I〉 6→ .

Note that (σI(eI))[v
′
I/x] = (σI [x 7→ v′I])(eI).

It is now time to turn to the second of our assumptions. We instantiate the
definition of the logical relation with n′ − 1, W ′′, σI [x 7→ v′I], σS [x 7→ v′S], and
ρ[α 7→ ν]. We need to show that the substitutions are related, i.e., that

(n′ − 1,m, σI [x 7→ v′I](y), σS [x 7→ v′S](y)) ∈ VJ∆,α ` τ ′Kρ[α 7→ν](W ′′)

for any m ∈ N and any (y : τ ′) ∈ Γ, x : τ . For all the variables other than x
this holds by weakening, world monotonicity and downwards-closure; for x we
obtained the necessary property relating v′I to v′S from the first assumption. Note
that picking n′ − 1 as the index was crucial, since we only got this final relation
for 0 logical steps.2 However, since we count unpack-pack reductions, we can
safely use n′ − 1 here.

By showing the substitutions to be related, we have learned that the expres-
sions eI and eS are also related, after applying the substitutions:

(n′ − 1, σI(eI)[v
′
I/x], σS(eS)[v′S/x]) ∈ E(VJ∆,α ` τKρ[α7→ν](W ′′)).

If we unfold the definition of the expression closure, we notice that if we instantiate
it with n′ − 1, i − 1, hI , h

′
I , hS and W ′′ we can use it to complete the proof,

since 〈unpack σS(vS) as x in σS(eS), hS〉 → 〈σS(eS)[v′S/x], hS〉. Thus, it suffices
to show that

〈(σI(eI))[v′I/x], hI〉 →i−1 〈e′I , h′I〉 6→ (n′ − 1, hI , hS) ∈ bW ′′c

However, the first of these properties we already obtained, and the second holds
by downwards-closure of erasure. ut
2 This is caused by the order of quantifiers in the definition: we needed to pick a number

of logical steps before we obtained the witnesses from the definition, including v′I , v
′
S

and ν.

The fundamental theorem of logical relations (Lemma 12) and a similar
property for contexts (Lemma 13) follow as corollaries of the compatibility
lemmas. The proofs follow by induction on the respective typing derivations.

Lemma 12 If ∆;Γ ` e : τ then ∆;Γ |= e ≤log e : τ .

Lemma 13 For any context C such that C : (∆i;Γi, τi) (∆o;Γo, τo), if
∆i;Γi ` eI ≤log eS : τi then ∆o;Γo ` C[eI] ≤log C[eS] : τo.

Theorem 2 (Soundness) If ∆;Γ |= eI ≤log eS : τ then ∆;Γ ` eI ≤ctx eS : τ .

Proof. Let C be an arbitrary context such that C : (∆;Γ, τ) (−;−, 1) and
〈C[eI], []〉 →∗ 〈∗, hI〉. Then there exists an i such that 〈C[eI], []〉 →i 〈∗, hI〉.
By Lemma 13 it follows that −;− |= C[eI] ≤log C[eS] : 1 and thus (i +
1, C[eI], C[eS]) ∈ E(VJ−;− ` 1K)([]). By definition of E this gives us vS , hS
and W such that 〈C[eS], []〉 →∗ 〈vS , hS〉 and (1,m, ∗, vS) ∈ VJ−;− ` 1K(W) for
any m ∈ N. From the latter we obtain vS = ∗, which ends the proof. ut

5 Example

Recall the example from the Introduction where f takes as an argument an
ADT implementation of type ∃α. (1→ α)× (α→ N) and returns a new ADT
implementation of the same type:

λx. unpack x as y in pack (λz. ref (π1(y)(z)), λz. π2(y)(!z))

Under the hood, f wraps instances of the new ADT implementation in an
additional reference. However, since this is transparent to clients, one would
expect that f(x) is contextually equivalent to x:

−;x : τ ` x ∼=ctx f(x) : τ

where τ is the type ∃α. (1→ α)× (α→ N).
The left-to-right approximation, −;x : τ ` x ≤ctx f(x) : τ , causes problems

for previous step-indexed logical relations, as it requires an additional logical step
without introducing a corresponding reduction step on the left. In this Section
we prove the left-to-right approximation using our logical relation.

Conceptually, to prove the left-to-right approximation, we need to relate values
of type α to values of type α ref, the type constructed by the right-hand-side
package, given a relation ν that relates pairs of values of type α. The obvious
way to proceed is to introduce an invariant that relates the value on the left,
with the value stored at the given location on the right:

S(vI , lS)(W)
def
= {(n,m, hI , hS) | lS ∈ dom(hS)∧ (n,m, vI , hS(lS)) ∈ ν(W)} (2)

This definition forms a valid invariant for any vI and lS , i.e., S(vI , lS) ∈ Înv.
Since the objects we want to relate are existential packages, we need to pick

an interpretation ν′ ∈ Type for the existential type before any locations for
the right-hand-side are actually allocated. This is why we use a Kripke logical
relation: we can use the world, in much the same way as we did for the reference
type in Figure 4, and take

ν′(W)
def
= {(n,m, vI , vS) | ∃ι ∈ dom(W). ξ(W (ι))

n,m
= I Înv

S(vI , vS)} (3)

Thus far, we made no particular use of our transfinite step-indexing: these
definitions could well be stated in a standard setup. The power of our approach
comes from the following property.

Lemma 14 For any k > 0, any pair of values vI , vS ∈ Val such that (k,m +
2, vI , vS) ∈ ν′(W) and any heaps hI , hS ∈ Heap such that (k + 1, hI , hS) ∈ bW c,

(k,m, vI , hS(vS)) ∈ ν(W).

The higher logical step-index in the assumption is required since, as we shall see,
we need to unfold the recursive domain equation to prove it. Once we have the
lemma, if we need to show that (k,m, vI , hS(vS)) ∈ ν(W) for an arbitrary m, as
the expression closure obliges us to do, and know that ∀m. (k,m, vI , vS) ∈ ν′(W),
we can simply instantiate our assumption with m + 2 and use it. In this way,
the fact that our model allows us to take arbitrary number of logical steps is
crucial to allow us to prove this type of abstractions correct. We first prove the
preceding lemma, and then turn to formally treating the example.

Proof (Lemma 14). By (3), we know there is an invariant identifier ι ∈ dom(W)

such that ξ(W (ι))
k,m+2

= I Înv
S(vI , vS). This last property is, by definition of I,

equivalent to

ξ(W (ι))
k,m+1

=
Înv

S(vI , vS).

Furthermore, since we know that ι defines an invariant in the world W , we
can use the heap satisfaction assumption, together with Lemma 5 to obtain
subheaps hιI ⊆ hI and hιS ⊆ hS such that (k, n, hιI , h

ι
S) ∈ ξ(W (ι))(W) for any n.

Taking n = m, we thus get (k,m, hιI , h
ι
S) ∈ ξ(W (ι))(W), and ultimately, from

the (k,m+ 1)-equality of the invariants,

(k,m, hιI , h
ι
S) ∈ S(vI , vS)(W).

Unfolding the definition of S, (2), we find that (k,m, vI , h
ι
S(vS)) ∈ ν(W), which

ends the proof. ut

Lemma 15

−;x : τ ` x ≤ctx f(x) : τ

Proof. By Theorem 2 it suffices to prove that x is logically related to f(x):
−;x : τ |= x ≤log f(x) : τ .

Let n ∈ N, W ∈World and σI , σS ∈ Valx:τ , such that

∀m. (n,m, σI(x), σS(x)) ∈ VJ− ` τK[](W)

From the interpretation of existential and product types it follows that there
exists a ν ∈ Type and v1I , v2I , v1S , v2S ∈ Val such that σI(x) = (v1I , v2I),
σS(x) = (v1S , v2S) and

(n, 0, v1I , v1S) ∈ VJα ` 1→ αK[α 7→ν](W) (4)

(n, 0, v2I , v2S) ∈ VJα ` α→ NK[α 7→ν](W) (5)

Since σI(x) is already a value and f(σS(x)) pure-reduces to the following value

vs
def
= pack (λz. ref (π1(v1S , v2S)(z)), λz. π2(v1S , v2S)(!z))

it suffices to prove that σI(x) and vS are related by the τ value relation:

∀n′ ≤ n. ∀m ∈ N. ∀W ′ ≥W. (n′,m, σI(x), vS) ∈ VJ− ` τK[](W ′)

We thus have to pick a relational interpretation of the new abstract type. As
discussed before, we relate the implementation value vI with the specification
location lS through the type ν′, defined in (3). Recall, the definition states that
there exists an invariant S (2) that owns the specification location lS and asserts
that this location contains a value vS on the specification side, such that vI and
vS are ν-related. Next, we have to prove that the components of the pairs are
related:

∀n′ ≤ n. ∀m ∈ N. ∀W ′ ≥W.
(n′,m, v1I , λz. ref (π1(v1S , v2S)(z))) ∈ VJα ` 1→ αK[α7→ν′](W

′) ∧
(n′,m, v2I , λz. π2(v1S , v2S)(!z))) ∈ VJα ` α→ NK[α 7→ν′](W

′)

We will focus on proving the second conjunct, as this is the one that requires an
unfolding of the impredicative invariant without a corresponding reduction step.
From the interpretation of function types, we have to prove the functions take
ν′-related arguments to N-related expressions:

∀n′ ≤ n. ∀W ′ ≥W. ∀n′′ < n′. ∀uI , uS .
(∀m ∈ N. (n′′,m, uI , uS) ∈ ν′(W ′))
⇒ (n′′ + 1, v2I uI , (λz. π2(v1S , v2S)(!z)) uS) ∈ E(VJα ` NK[α7→ν′])(W

′)

Let n′, n′′ ∈ N, W ′ ∈World and uI , uS ∈ Val such that

n′′ < n′ ≤ n W ′ ≥W ∀m ∈ N. (n′′,m, uI , uS) ∈ ν′(W ′)

To show that

(n′′ + 1,m, v2I uI , (λz. π2(v1S , v2S)(!z)) uS) ∈ E(VJα ` NK[α7→ν′])(W
′)

let k, i ∈ N, hI , hS , h
′
I ∈ Heap, W ′′ ∈World and e′I ∈ Exp such that

i < k ≤ n′′ + 1 W ′′ ≥W ′ (k, hI , hS) ∈ bW ′′c 〈v2I uI , hI〉 →i 〈e′I , h′I〉 6→

To apply our earlier hypothesis (5), (n, 0, v2I , v2S) ∈ VJα ` α→ NK[α 7→ν](W), we
need to prove that uI and hS(uS) are (k − 1,m)-related for an arbitrary number
of logical steps m. We now revert to the earlier discussion, and use Lemma 14,
which requires us to instantiate our earlier assumption about ν′ relatedness of uI
and uS with m+ 2 logical steps (since we need two logical steps to unfold the
invariant).

To show that ∀m. (k − 1,m, uI , hS(uS)) ∈ ν(W ′′), take any m ∈ N. Since
k − 1 ≤ n′′ and W ′′ ≥ W ′ we have (k − 1,m + 2, uI , uS) ∈ ν′(W ′), and by
Lemma 14 the property holds.

Hence, ∀m. (k − 1,m, uI , hS(uS)) ∈ ν(W ′′). From our original assumption
(5) it thus follows that v2I uI and v2S (hS(uS)) are k-related in the expression
closure:

(k, v2I uI , v2S hS(uS)) ∈ E(VJα ` NK[α7→ν])(W ′′)

Since i < k ≤ k it thus follows that there exists h′S , v′S and W ′′′ such that

W ′′′ ≥W ′′ 〈v2S hS(uS), hS〉 →∗ 〈v′S , h′S〉 (k − i, h′I , h′S) ∈ bW ′′′c

and ∀m. (k − i,m, e′I , v′S) ∈ VJα ` NK[α 7→ν](W ′′′), as required. ut

6 Related work

Step-indexing was invented by Appel and McAllester as a way of proving type
safety for a language with recursive types using only simple mathematics suitable
for foundational proof-carrying code [5]. Ahmed and co-workers developed the
technique to support relational reasoning and more advanced languages featuring
general references and impredicative polymorphism [3, 1, 2]. These relational mod-
els have subsequently been refined with ever more powerful forms of invariants
and applied to reason about local state and control effects [15], compiler correct-
ness [17, 7], type-based program transformations [11] and fine-grained concurrent
data structures [22], among other things. In another concurrent line of work, step-
indexing has been applied to define models of increasingly expressive capability
type systems [10] and concurrent program logics [4, 21, 20, 18]. A common thread
in both of these lines of work, is increasingly powerful recursively-defined worlds
to capture various forms of invariants. We believe the complexity of invariants
and associated recursively-defined worlds is orthogonal to the problem of the
tight coupling between concrete and logical steps. In particular, our fixed point
construction for locally contractive functors (Theorem 1) allows us to define
recursively-defined worlds of the same form as prior approaches.

Usually, step-indexed logical relations are indexed over ω, because the closure
ordinal of the inductively-defined convergence (termination) predicate is ω. An
exception is the logical relation in [8] for reasoning about must-equivalence for a
pure functional language without references but with countable non-determinism.

Because of the presence of countable non-determinism, the closure ordinal of the
inductively defined must-convergence predicate in loc. cit. is not ω. However, it is
bounded by ω1, and therefore the logical relation is indexed over ω1. Note that this
use of transfinite indexing is quite different from our use of transfinite indexing
in this paper. Here we use transfinite indexing even though the closure ordinal
of the convergence predicate is ω, because we seek to avoid linking unfoldings
of the recursive domain equation to concrete reduction steps in the operational
semantics.

Various ways have been proposed for stratifying the construction of semantic
domains using step-indexing. These include explicit step-indexing [3, 6], Hobor
et al.’s indirection theory [16], Birkedal et al.’s ultrametric approach [12] and
Birkedal et al.’s guarded recursion approach [9]. Indirection theory and the
ultrametric approach are both currently specific to step-indexing over ω. Birkedal
et al. have shown that sheaves over any complete Heyting algebra with a well-
founded base models guarded dependent type theory [9]. It would be interesting
to explore the possibility of using the internal language of sheaves over ω2 + 1 to
define and reason about models step-indexed over ω2.

Di Gianantonio and Miculan [13] introduced complete ordered families of
equivalences as a unifying theory for mixed-variance recursive definitions that
supports transfinite fixed point constructions. They define complete ordered fam-
ilies of equivalences over an arbitrary well-founded order and prove a generalized
fixed point theorem for contractive endofunctions over these complete ordered
families of equivalences. This allows for mixed-variance recursive definitions of
elements of c.o.f.e.s. We extend their theory with an explicit construction for
mixed-variance recursive definitions of c.o.f.e.s, for the specific instance of c.o.f.e.s
over ω2.

7 Conclusion and Future Work

Step-indexing has proven to be a very powerful technique for modelling advanced
type systems and expressive program logics. Impredicative invariants are crucial
for achieving modular reasoning and they show up in many different forms in
recent models of type systems and program logics. Step-indexing allows us to
model impredicative invariants by stratifying the model construction using steps.
Unfortunately, current step-indexed models relate these steps directly to concrete
reduction steps in the underlying operational semantics and require a concrete
reduction step for each logical step. This is especially problematic for higher-
order abstractions that introduce new logical steps, without any corresponding
reduction steps. This is a common occurrence in higher-order program logics
when deriving new specifications for specific use-cases of libraries from an abstract
library specification.

In this paper we have isolated the problem in the setting of logical relations
and demonstrated a solution based on transfinite step-indexing. This setting
is sufficiently simple that we can present all the necessary details to see how
transfinite step-indexing solves the problem. To do so we have developed a general

theory for solving recursive domain equations using step-indexing over ω2. Since
our theory allows us to solve the equations used in the step-indexed models
of cutting-edge program logics, we believe our solution will also scale to these
systems, which can hopefully lead to development of more robust reasoning
principles.

A natural question to ask is whether step-indexing over ω2 suffices or whether
we might wish to index beyond ω2. It is not clear whether indexing beyond ω2

will allow us to prove more equivalences than with our current model. However,
it seems plausible that indexing beyond ω2 could simplify reasoning by allowing
less precise counting of logical steps and in the particular case of a step-indexed
program logic might help with modularity by allowing the logic to abstract over
the precise number of logical steps used. We leave these questions open for future
work.

Acknowledgements

This research was supported in part by the ModuRes Sapere Aude Advanced
Grant from The Danish Council for Independent Research for the Natural Sciences
(FNU) and Danish Council for Independent Research project DFF – 4181-00273.

References

1. A. Ahmed. Step-Indexed Syntactic Logical Relations for Recursive and Quantified
Types. In Proceedings of ESOP, 2006.

2. A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent Representation Indepen-
dence. In Proceedings of POPL, 2009.

3. A. J. Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton
University, 2004.

4. A. W. Appel, R. Dockins, A. Hobor, J. Dodds, X. Leroy, S. Blazy, G. Stewart, and
L. Beringer. Program Logics for Certified Compilers. Cambridge University Press,
2014.

5. A. W. Appel and D. McAllester. An Indexed Model of Recursive Types for
Foundational Proof-carrying Code. ACM Trans. Program. Lang. Syst., 23(5):657–
683, 2001.

6. A. W. Appel, P.-A. Melliès, C. D. Richards, and J. Vouillon. A Very Modal Model
of a Modern, Major, General Type System. In Proceedings of POPL, 2007.

7. N. Benton and C.-K. Hur. Biorthogonality, Step-Indexing and Compiler Correctness.
In Proceedings of ICFP, 2009.

8. L. Birkedal, A. Bizjak, and J. Schwinghammer. Step-Indexed Relational Reasoning
for Countable Nondeterminism. Logical Methods in Computer Science, 9(4):1–23,
2013.

9. L. Birkedal, R. E. Møgelberg, J. Schwinghammer, and K. Støvring. First steps
in synthetic guarded domain theory: step-indexing in the topos of trees. Logical
Methods in Computer Science, 8(4), 2012.

10. L. Birkedal, B. Reus, J. Schwinghammer, K. Støvring, J. Thamsborg, and H. Yang.
Step-Indexed Kripke Models over Recursive Worlds. In Proceedings of POPL, 2011.

11. L. Birkedal, F. Sieczkowski, and J. Thamsborg. A Concurrent Logical Relation. In
Proceedings of CSL, 2012.

12. L. Birkedal, K. Støvring, and J. Thamsborg. The category-theoretic solution of
recursive metric-space equations. Theoretical Computer Science, 411:4102–4122,
2010.

13. P. Di Gianantonio and M. Miculan. A Unifying Approach to Recursive and Co-
recursive Definitions. In Proceedings of TYPES, 2002.

14. M. Dodds, S. Jagannathan, M. Parkinson, K. Svendsen, and L. Birkedal. Verifying
Custom Synchronisation Constructs Using Higher-Order Separation Logic. Accepted
for publication in TOPLAS.

15. D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state and control
effects on local relational reasoning. Journal of Functional Programming, 22:477–528,
2012.

16. A. Hobor, R. Dockins, and A. W. Appel. A Theory of Indirection via Approximation.
In Proceedings of POPL, 2010.

17. C.-K. Hur and D. Dreyer. A Kripke Logical Relation Between ML and Assembly.
In Proceedings of POPL, 2011.

18. R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal, and
D. Dreyer. Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent
Reasoning. In Proceedings of POPL, 2015.

19. J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In
Proceedings of LICS, 2002.

20. K. Svendsen and L. Birkedal. Impredicative Concurrent Abstract Predicates. In
Proceedings of ESOP, 2014.

21. A. Turon, D. Dreyer, and L. Birkedal. Unifying Refinement and Hoare-Style
Reasoning in a Logic for Higher-Order Concurrency. In Proceedings of ICFP, 2013.

22. A. J. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer. Logical Relations
for Fine-grained Concurrency. In Proceedings of POPL, 2013.

