O. Oreifej and Z. Liu, HON4D: Histogram of Oriented 4D Normals for Activity Recognition from Depth Sequences, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.716-723, 2013.
DOI : 10.1109/CVPR.2013.98

X. Yang and Y. Tian, Super Normal Vector for Activity Recognition Using Depth Sequences, 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.804-811, 2014.
DOI : 10.1109/CVPR.2014.108

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.665.8605

J. Sanchez, F. Perronnin, T. Mensink, and J. Verbeek, Image Classification with the Fisher Vector: Theory and Practice, International Journal of Computer Vision, vol.73, issue.2, pp.222-245, 2013.
DOI : 10.1007/s11263-013-0636-x

URL : https://hal.archives-ouvertes.fr/hal-00779493

L. Liu, C. Shen, L. Wang, A. Van-den-hengel, and C. Wang, Encoding High Dimensional Local Features by Sparse Coding Based Fisher Vectors, NIPS, pp.1143-1151, 2014.

L. Xia, C. C. Chen, and J. K. Aggarwal, View invariant human action recognition using histograms of 3D joints, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp.20-27
DOI : 10.1109/CVPRW.2012.6239233

L. R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, Proceedings of the IEEE, pp.257-286, 1989.

X. Yang and Y. L. Tian, EigenJoints-based Action Recognition Using Naive-Bayes-Nearest-Neighbor, CVPRW, 2012, pp.14-19
DOI : 10.1109/cvprw.2012.6239232

O. Boiman, E. Shechtman, and M. Irani, In defense of Nearest-Neighbor based image classification, 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2008.
DOI : 10.1109/CVPR.2008.4587598

M. Zanfir, M. Leordeanu, and C. Sminchisescu, The Moving Pose: An Efficient 3D Kinematics Descriptor for Low-Latency Action Recognition and Detection, 2013 IEEE International Conference on Computer Vision, pp.2752-2759, 2013.
DOI : 10.1109/ICCV.2013.342

R. Vemulapalli, F. Arrate, and R. Chellappa, Human Action Recognition by Representing 3D Skeletons as Points in a Lie Group, 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.588-595, 2014.
DOI : 10.1109/CVPR.2014.82

R. M. Murray, S. S. Sastry, and L. Zexiang, A Mathematical Introduction to Robotic Manipulation, 1994.

M. Müller, Information Retrieval for Music and Motion, 2007.
DOI : 10.1007/978-3-540-74048-3

J. Wang, Z. Liu, Y. Wu, and J. Yuan, Mining actionlet ensemble for action recognition with depth cameras, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.1290-1297, 2012.
DOI : 10.1109/CVPR.2012.6247813

A. Eweiwi, M. S. Cheema, C. Bauckhage, and J. Gall, Efficient Pose-Based Action Recognition, ACCV, pp.428-443, 2014.
DOI : 10.1007/978-3-319-16814-2_28

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.674.7763

G. Evangelidis, G. Singh, and R. Horaud, Skeletal Quads: Human Action Recognition Using Joint Quadruples, 2014 22nd International Conference on Pattern Recognition, pp.4513-4518, 2014.
DOI : 10.1109/ICPR.2014.772

URL : https://hal.archives-ouvertes.fr/hal-00989725

W. Li, Z. Zhang, and Z. Liu, Action recognition based on a bag of 3D points, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Workshops, pp.9-14, 2010.
DOI : 10.1109/CVPRW.2010.5543273

A. Kurakin, Z. Zhang, and Z. Liu, A Read-Time System for Dynamic Hand Gesture Recognition with A Depth Sensor, EUSIPCO, 2012.

J. Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu, Robust 3D Action Recognition with Random Occupancy Patterns, ECCV, pp.872-885, 2012.
DOI : 10.1007/978-3-642-33709-3_62

X. Yang, C. Zhang, and Y. Tian, Recognizing actions using depth motion maps-based histograms of oriented gradients, Proceedings of the 20th ACM international conference on Multimedia, MM '12, pp.1057-1060, 2012.
DOI : 10.1145/2393347.2396382

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.670.3821

K. Mikolajczyk and C. Schmid, A performance evaluation of local descriptors, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.10, pp.1615-1630, 2005.
DOI : 10.1109/TPAMI.2005.188

URL : https://hal.archives-ouvertes.fr/inria-00548227

L. Xia and J. K. Aggarwal, Spatio-temporal Depth Cuboid Similarity Feature for Activity Recognition Using Depth Camera, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.2834-2841, 2013.
DOI : 10.1109/CVPR.2013.365

C. Wang, Y. Wang, and A. L. Yuille, An Approach to Pose-Based Action Recognition, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.915-922, 2013.
DOI : 10.1109/CVPR.2013.123

Y. Du, W. Wang, and L. Wang, Hierarchical Recurrent Neural Network for Skeleton Based Action Recognition, CVPR, pp.1110-1118, 2015.

J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks, vol.61, pp.85-117, 2015.
DOI : 10.1016/j.neunet.2014.09.003

S. Tang, X. Wang, X. Lv, T. X. Han, J. Keller et al., Histogram of Oriented Normal Vectors for Object Recognition with a Depth Sensor, ACCV, pp.525-538, 2013.
DOI : 10.1007/978-3-642-37444-9_41

F. Perronnin and C. Dance, Fisher Kernels on Visual Vocabularies for Image Categorization, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.
DOI : 10.1109/CVPR.2007.383266

F. Perronnin, J. Sanchez, and T. Mensink, Improving the Fisher Kernel for Large-Scale Image Classification, ECCV, pp.143-156, 2010.
DOI : 10.1007/978-3-642-15561-1_11

URL : https://hal.archives-ouvertes.fr/inria-00548630

R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin, LIBLINEAR: A Library for Large Linear Classification, Journal of Machine Learning Research, vol.9, pp.1871-1874, 2008.

C. Chen, K. Liu, and N. Kehtarnavaz, Real-time human action recognition based on depth motion maps, Journal of Real-Time Image Processing, vol.32, issue.1, pp.1-9, 2013.
DOI : 10.1007/s11554-013-0370-1

M. A. Gowayyed, M. Torki, M. E. Hussein, and M. El-saban, Histogram of Oriented Displacements (HOD): Describing Trajectories of Human Joints for Action Recognition, IJCAI, pp.1351-1357, 2013.