Is it hard to retrieve an error-correcting pair?

Abstract : Code-based cryptography is an interesting alternative to classic number-theory Public-Key Cryptosystems (PKC) since it is conjectured to be secure against quantum computer attacks. Many families of codes have been proposed for these cryp-tosystems. One of the main requirements is having high performance t-bounded decoding algorithms which is achieved in the case the code has a terror correcting pair (ECP). The class of codes with a t-ECP is proposed for the McEliece cryp-tosystem. The hardness of retrieving the t-ECP for a given code is considered. To this end we have to solve a large system of bilinear equations. Two possible induction procedures are considered, one for sub/super ECP's and one by punctur-ing/shortening. In both procedures in every step only a few bilinear equations need to be solved.
Type de document :
Communication dans un congrès
22nd Conference on Applications of Computer Algebra (ACA 2016), Aug 2016, Kassel, Germany. 2016, 〈http://www.mathematik.uni-kassel.de/ACA2016/index.php〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01409299
Contributeur : Irene Márquez Corbella <>
Soumis le : lundi 5 décembre 2016 - 19:52:50
Dernière modification le : jeudi 26 avril 2018 - 10:28:25
Document(s) archivé(s) le : mardi 21 mars 2017 - 06:44:53

Fichier

CACTC16-2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01409299, version 1

Collections

Citation

Irene Márquez-Corbella, Ruud Pellikaan. Is it hard to retrieve an error-correcting pair?. 22nd Conference on Applications of Computer Algebra (ACA 2016), Aug 2016, Kassel, Germany. 2016, 〈http://www.mathematik.uni-kassel.de/ACA2016/index.php〉. 〈hal-01409299〉

Partager

Métriques

Consultations de la notice

105

Téléchargements de fichiers

54