. Bennett and . Brassard, Quantum cryptography: Public key distribution and coin tossing, Proc. Of IEEE Inter. Conf. on Computer Systems and Signal Processing, 1984.
DOI : 10.1016/j.tcs.2014.05.025

H. Buhrman, N. Chandran, S. Fehr, R. Gelles, and V. Goyal, Position-Based Quantum Cryptography: Impossibility and Constructions, SIAM Journal on Computing, vol.43, issue.1, pp.150-178, 2014.
DOI : 10.1137/130913687

H. Buhrman and S. Massar, Causality and Tsirelson's bounds, Physical Review A, vol.72, issue.5, p.52103, 2005.
DOI : 10.1103/PhysRevA.72.052103

M. Ben-or, S. Goldwasser, J. Kilian, and A. Wigderson, Multi-prover interactive proofs: how to remove intractability, Proceedings of the twentieth annual ACM symposium on Theory of computing , STOC '88, pp.113-131, 1988.
DOI : 10.1145/62212.62223

M. Bavarian and P. W. Shor, Information Causality, Szemer??di-Trotter and Algebraic Variants of CHSH, Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS '15, pp.123-132, 2015.
DOI : 10.1145/2688073.2688112

K. Chakraborty, A. Chailloux, and A. Leverrier, Arbitrarily Long Relativistic Bit Commitment, Physical Review Letters, vol.115, issue.25, p.250501, 2015.
DOI : 10.1103/PhysRevLett.115.250501

URL : https://hal.archives-ouvertes.fr/hal-01246243

[. Chandran, V. Goyal, R. Moriarty, and R. Ostrovsky, Position based cryptography, Advances in Cryptology-CRYPTO 2009, pp.391-407, 2009.
DOI : 10.1007/978-3-642-03356-8_23

C. Crépeau, L. Salvail, J. Simard, and A. Tapp, Two Provers in Isolation, Advances in Cryptology?ASIACRYPT 2011, pp.407-430, 2011.
DOI : 10.1007/978-3-642-25385-0_22

S. Fehr and M. Fillinger, On the Composition of Two-Prover Commitments, and Applications to Multi-round Relativistic Commitments, Advances in Cryptology -EUROCRYPT 2016 -35th Annual International Conference on the Theory and Applications of Cryptographic Techniques Proceedings, Part II, pp.477-496, 2016.
DOI : 10.1007/978-3-662-49896-5_17

A. Kent, Unconditionally Secure Bit Commitment, Physical Review Letters, vol.83, issue.7, pp.1447-1450, 1999.
DOI : 10.1103/PhysRevLett.83.1447

A. Kent, Secure Classical Bit Commitment Using Fixed Capacity Communication Channels, Journal of Cryptology, vol.18, issue.4, pp.313-335, 2005.
DOI : 10.1007/s00145-005-0905-8

URL : http://arxiv.org/abs/quant-ph/9906103

A. Kent, Unconditionally secure bit commitment with flying qudits, New Journal of Physics, vol.13, issue.11, p.113015, 2011.
DOI : 10.1088/1367-2630/13/11/113015

URL : http://doi.org/10.1088/1367-2630/13/11/113015

A. Kent, Unconditionally Secure Bit Commitment by Transmitting Measurement Outcomes, Physical Review Letters, vol.109, issue.13, p.130501, 2012.
DOI : 10.1103/PhysRevLett.109.130501

URL : http://arxiv.org/abs/1108.2879

A. Kent, W. J. Munro, and T. P. Spiller, Quantum tagging: Authenticating location via quantum information and relativistic signaling constraints, Physical Review A, vol.84, issue.1, p.12326, 2011.
DOI : 10.1103/PhysRevA.84.012326

J. Kaniewski, M. Tomamichel, E. Hanggi, and S. Wehner, Secure bit commitment from relativistic constraints. Information Theory, IEEE Transactions on, vol.59, issue.7, pp.4687-4699, 2013.
DOI : 10.1109/tit.2013.2247463

URL : http://arxiv.org/abs/1206.1740

H. Lo and H. F. Chau, Is Quantum Bit Commitment Really Possible?, Physical Review Letters, vol.78, issue.17, pp.3410-3413, 1997.
DOI : 10.1103/PhysRevLett.78.3410

URL : http://arxiv.org/abs/quant-ph/9603004

T. Lunghi, J. Kaniewski, F. Bussières, R. Houlmann, M. Tomamichel et al., Experimental Bit Commitment Based on Quantum Communication and Special Relativity, Physical Review Letters, vol.111, issue.18, p.180504, 2013.
DOI : 10.1103/PhysRevLett.111.180504

URL : http://arxiv.org/abs/1306.4801

. Lkb-+-15-]-t, J. Lunghi, F. Kaniewski, R. Bussières, M. Houlmann et al., Practical relativistic bit commitment, Phys. Rev. Lett, vol.115, p.30502, 2015.

. Hoi-kwan, H. Lau, and . Lo, Insecurity of position-based quantum-cryptography protocols against entanglement attacks, Physical Review A, vol.83, issue.1, p.12322, 2011.

D. Mayers, Unconditionally Secure Quantum Bit Commitment is Impossible, Physical Review Letters, vol.78, issue.17, pp.3414-3417, 1997.
DOI : 10.1103/PhysRevLett.78.3414

URL : http://arxiv.org/abs/quant-ph/9605044

M. Pivoluska and M. Plesch, An explicit classical strategy for winning a ${\mathrm{CHSH}}_{q}$ game, New Journal of Physics, vol.18, issue.2, p.25013, 2016.
DOI : 10.1088/1367-2630/18/2/025013

M. Pivoluska, M. Pawlowski, and M. Plesch, Experimentally secure relativistic bit commitment. arXiv preprint quant-ph:1601.08095, 2016.

A. [. Rivest, L. Shamir, and . Adleman, A method for obtaining digital signatures and public-key cryptosystems, Communications of the ACM, vol.21, issue.2, pp.120-126, 1978.
DOI : 10.1145/359340.359342

J. Simard, Classical and quantum strategies for bit commitment schemes in the two-prover model, 2007.

D. Unruh, Quantum Position Verification in the Random Oracle Model, Advances in Cryptology?CRYPTO 2014, pp.1-18, 2014.
DOI : 10.1007/978-3-662-44381-1_1

. Vmh-+-16-]-e, A. Verbanis, R. Martin, G. Houlmann, F. Boso et al., 24-hour relativistic bit commitment. arXiv preprint, 2016.