D. Arthur and S. Vassilvitskii, k-means++: The advantages of careful seeding, ACM- SODA, page 1035, 2007.

E. Bannai and T. Ito, On finite Moore graphs, J. Fac. Sci. Univ. Tokyo Sect. IA Math, vol.20, pp.191-208, 1973.

F. Chazal, L. Guibas, S. Oudot, and P. Skraba, Persistence-Based Clustering in Riemannian Manifolds, Journal of the ACM, vol.60, issue.6, pp.1-38, 2013.
DOI : 10.1145/2535927

URL : https://hal.archives-ouvertes.fr/hal-01094872

Y. Cheng, Mean shift, mode seeking, and clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.17, issue.8, pp.790-799, 1995.
DOI : 10.1109/34.400568

D. Comaniciu and P. Meer, Mean shift: A robust approach toward feature space analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.24, issue.5, pp.603-619, 2002.

T. M. Cover and J. A. Thomas, Elements of Information Theory, 2006.
DOI : 10.1002/047174882x

S. Dongen, Performance criteria for graph clustering and markov cluster experiments, 2000.

P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer, Random generation of combinatorial structures: Boltzmann samplers and beyond, Proceedings of the 2011 Winter Simulation Conference (WSC), pp.4-5577, 2004.
DOI : 10.1109/WSC.2011.6147745

URL : https://hal.archives-ouvertes.fr/hal-00654267

R. O. Duda and P. E. Hart, Pattern classification and scene analysis, 1973.

P. Flajolet and R. Sedgewick, Analytic combinatorics, 2009.
DOI : 10.1017/CBO9780511801655

URL : https://hal.archives-ouvertes.fr/inria-00072739

M. Fredman and R. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, Journal of the ACM, vol.34, issue.3, pp.596-615, 1987.
DOI : 10.1145/28869.28874

O. Goldschmidt and D. S. Hochbaum, A Polynomial Algorithm for the k-cut Problem for Fixed k, Mathematics of Operations Research, vol.19, issue.1, 1994.
DOI : 10.1287/moor.19.1.24

R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Computers in Physics, vol.3, issue.5, 1989.
DOI : 10.1063/1.4822863

J. Håstad, Clique is hard to approximate within n1?????, Acta Mathematica, vol.182, issue.1, pp.105-142, 1999.
DOI : 10.1007/BF02392825

A. K. Jain, Data clustering: 50 years beyond k-means. Pattern recognition letters, pp.31651-666, 2010.
DOI : 10.1007/978-3-540-87479-9_3

R. Kannan, S. Vempala, and A. Vetta, On clusterings, Journal of the ACM, vol.51, issue.3, pp.497-515, 2004.
DOI : 10.1145/990308.990313

R. M. Karp, Reducibility among combinatorial problems, Complexity of Computer Computations, pp.85-103, 1972.
DOI : 10.1007/978-3-540-68279-0_8

J. Kleinberg, An impossibility theorem for clustering Advances in neural information processing systems, pp.463-470, 2003.

B. Larsen and C. Aone, Fast and effective text mining using linear-time document clustering, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '99, pp.16-22, 1999.
DOI : 10.1145/312129.312186

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.474.6500

U. and V. Luxburg, Clustering Stability, 2010.

M. Meila, Comparing clusterings, Proceedings of the 22nd international conference on Machine learning , ICML '05, 2002.
DOI : 10.1145/1102351.1102424

M. Meil?, Comparing clusterings???an information based distance, Journal of Multivariate Analysis, vol.98, issue.5, pp.873-895, 2007.
DOI : 10.1016/j.jmva.2006.11.013

H. Nagamochi and T. Ibaraki, A fast algorithm for computing minimum 3-way and 4-way cuts, Mathematical Programming, vol.88, issue.3, pp.507-520, 2000.
DOI : 10.1007/PL00011383

A. Rodriguez and A. Laio, Clustering by fast search and find of density peaks, Science, vol.344, issue.6191, pp.1492-1496, 2014.
DOI : 10.1126/science.1242072

Y. Rubner, C. Tomasi, and L. J. Guibas, The earth mover's distance as a metric for image retrieval, International Journal of Computer Vision, vol.40, issue.2, pp.99-121, 2000.
DOI : 10.1023/A:1026543900054

H. Saran and V. Vazirani, Finding k-cuts within twice the optimal, SIAM J. Comp, vol.24, 1995.
DOI : 10.1109/sfcs.1991.185443

U. and V. Luxburg, A tutorial on spectral clustering, Statistics and Computing, vol.21, issue.1, pp.395-416, 2007.
DOI : 10.1007/s11222-007-9033-z

T. Let, be the set of all different rooted spanning trees of G. We deduce in Corollary 13 an exact algorithm for the (k, D)-family-matching problem for G

. Corollary, that is an optimal solution for the (k, D)-family-matching problem for G, if

T. I. For-every-i-?-{1, k}. By construction of T , S is an admissible solution for the D-family-matching problem for G constrained by