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Abstract. In this work we propose a structured prediction technique that com-
bines the virtues of Gaussian Conditional Random Fields (G-CRF) with Deep
Learning: (a) our structured prediction task has a unique global optimum that
is obtained exactly from the solution of a linear system (b) the gradients of our
model parameters are analytically computed using closed form expressions, in
contrast to the memory-demanding contemporary deep structured prediction ap-
proaches [1,2] that rely on back-propagation-through-time, (c) our pairwise terms
do not have to be simple hand-crafted expressions, as in the line of works building
on the DenseCRF [1,3], but can rather be ‘discovered’ from data through deep
architectures, and (d) out system can trained in an end-to-end manner. Build-
ing on standard tools from numerical analysis we develop very efficient algo-
rithms for inference and learning, as well as a customized technique adapted to
the semantic segmentation task. This efficiency allows us to explore more so-
phisticated architectures for structured prediction in deep learning: we introduce
multi-resolution architectures to couple information across scales in a joint op-
timization framework, yielding systematic improvements. We demonstrate the
utility of our approach on the challenging VOC PASCAL 2012 image segmen-
tation benchmark, showing substantial improvements over strong baselines. We
make all of our code and experiments available at https://github.com/
siddharthachandra/gcrf.

1 Introduction

Over the last few years deep learning has resulted in dramatic progress in the task of
semantic image segmentation. Early works on using CNNs as feature extractors [4,5,0]
and combining them with standard superpixel-based front-ends gave substantial im-
provements over well-engineered approaches that used hand-crafted features. The cur-
rently mainstream approach is relying on ‘Fully’ Convolutional Networks (FCNs) [7,8],
where CNNSs are trained to provide fields of outputs used for pixelwise labeling.

A dominant research direction for improving semantic segmentation with deep learn-
ing is the combination of the powerful classification capabilities of FCNs with struc-
tured prediction [1,2,3,9,10,1 1], which aims at improving classification by capturing in-
teractions between predicted labels. One of the first works in the direction of combining
deep networks with structured prediction was [3] which advocated the use of densely-
connected conditional random fields (DenseCRF) [12] to post-process an FCNN output
SO as to obtain a sharper segmentation the preserves image boundaries. This was then
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used by Zheng et al. [ 1] who combined DenseCRF with a CNN into a single Recurrent
Neural Network (RNN), accommodating the DenseCRF post processing in an end-to-
end training procedure.

Most approaches for semantic segmentation perform structured prediction using
approximate inference and learning [9,13]. For instance the techniques of [1,2,3,10]
perform mean-field inference for a fixed number of 10 iterations. Going for higher ac-
curacy with more iterations could mean longer computation and eventually also mem-
ory bottlenecks: back-propagation-through-time operates on the intermediate ‘unrolled
inference’ results that have to be stored in (limited) GPU memory. Furthermore, the
non-convexity of the mean field objective means more iterations would only guaran-
tee convergence to a local minimum. The authors in [14] use piecewise training with
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1(a) Schematic of a fully convolutional neural network with a G-CRF module

U

1(b) nput Image 1(c) Person unary 1(d) QO Output 1(e) Person Probability

Fig. 1: (a) shows a detailed schematic representation of our fully convolutional neural network
with a G-CRF module. The G-CRF module is shown as the box outlined by dotted lines. The
factor graph inside the G-CRF module shows a 4—connected neighbourhood. The white blobs
represent pixels, red blobs represent unary factors, the green and blue squares represent vertical
and horizontal connectivity factors. The input image is shown in (b). The network populates
the unary terms (c), and horizontal and vertical pairwise terms. The G-CRF module collects the
unary and pairwise terms from the network and proposes an image hypothesis, i.e. scores (d)
after inference. These scores are finally converted to probabilities using the Softmax function (e),
which are then thresholded to obtain the segmentation. It can be seen that while the unary scores
in (c) miss part of the torso because it is occluded behind the hand. The flow of information from
the neighbouring region in the image, via the pairwise terms, encourages pixels in the occluded
region to take the same label as the rest of the torso (d). Further it can be seen that the person
boundaries are more pronounced in the output (d) due to pairwise constraints between pixels
corresponding to the person and background classes.
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CNN-based pairwise potentials and three iterations of inference, while those in [15]
use highly-sophisticated modules, effectively learning to approximate mean-field infer-
ence. In these two works a more pragmatic approach to inference is taken, considering
it as a sequence of operations that need to be learned [1]. These ‘inferning’-based ap-
proaches of combining learning and inference may be liberating, in the sense that one
acknowledges and accommodates the approximations in the inference through end-to-
end training. We show however here that exact inference and learning is feasible, while
not making compromises in the model’s expressive power.

Motivated by [16,17], our starting point in this work is the observation that a par-
ticular type of graphical model, the Gaussian Conditional Random Field (G-CRF), al-
lows us to perform exact and efficient Maximum-A-Posteriori (MAP) inference. Even
though Gaussian Random Fields are unimodal and as such less expressive, Gaussian
Conditional Random Fields are unimodal conditioned on the data, effectively reflect-
ing the fact that given the image one solution dominates the posterior distribution. The
G-CRF model thus allows us to construct rich expressive structured prediction mod-
els that still lend themselves to efficient inference. In particular, the log-likelihood of
the G-CRF posterior has the form of a quadratic energy function which captures unary
and pairwise interactions between random variables. There are two advantages to us-
ing a quadratic function: (a) unlike the energy of general graphical models, a quadratic
function has a unique global minimum if the system matrix is positive definite, and (b)
this unique minimum can be efficiently found by solving a system of linear equations.
We can actually discard the probabilistic underpinning of the G-CRF and understand
G-CREF inference as an energy-based model, casting structured prediction as quadratic
optimization (QO).

G-CRFs were exploited for instance in the regression tree fields model of Jancsary
et al. [17] where decision trees were used to construct G-CRF’s and address a host of
vision tasks, including inpainting, segmentation and pose estimation. In independent
work [2] proposed a similar approach for the task of image segmentation with CNNss,
where as in [14,15,18] FCNs are augmented with discriminatively trained convolutional
layers that model and enforce pairwise consistencies between neighbouring regions.

One major difference to [2], as well as other prior works [1,3,10,14,15], is that we
use exact inference and do not use back-propagation-through-time during training. In
particular building on the insights of [16,17], we observe that the MAP solution, as well
as the gradient of our objective with respect to the inputs of our structured prediction
module can be obtained through the solution of linear systems. Casting the learning and
inference tasks in terms of linear systems allows us to exploit the wealth of tools from
numerical analysis. As we show in Sec. 3, for Gaussian CRFs sequential/parallel mean-
field inference amounts to solving a linear system using the classic Gauss-Seidel/Jacobi
algorithms respectively. Instead of these under-performing methods we use conjugate
gradients which allow us to perform exact inference and back-propagation in a small
number (typically 10) iterations, with a negligible cost (0.02s for the general case in
Sec. 2, and 0.003s for the simplified formulation in Sec. 2.5) when implemented on the
GPU.

Secondly, building further on the connection between MAP inference and linear
system solutions, we propose memory- and time-efficient algorithms for weight-sharing
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(Sec. 2.5) and multi-scale inference (Sec. 3.2). In particular, in Section 2.5 we show that
one can further reduce the memory footprint and computation demands of our method
by introducing a Potts-type structure in the pairwise term. This results in multifold ac-
celerations, while delivering results that are competitive to the ones obtained with the
unconstrained pairwise term. In Sec. 3.2 we show that our approach allows us to work
with arbitrary neighbourhoods that go beyond the common 4—connected neighbour-
hoods. In particular we explore the merit of using multi-scale networks, where variables
computed from different image scales interact with each other. This gives rise to a flow
of information across different-sized neighborhoods. We show experimentally that this
yields substantially improved results over single-scale baselines.

In Sec. 2 we describe our approach in detail, and derive the expressions for weight
update rules for parameter learning that are used to train our networks in an end-to-end
manner. In Sec. 3 we analyze the efficiency of the linear system solvers and present
our multi-resolution structured prediction algorithm. In Sec. 4 we report consistent im-
provements over well-known baselines and state-of-the-art results on the VOC PAS-
CAL test set.

2 Quadratic Optimization Formulation

We now describe our approach. Consider an image Z containing P pixels. Each pixel
p € {p1,...,pp} cantake alabel | € {1,..., L}. Although our objective is to assign
discrete labels to the pixels, we phrase our problem as a continuous inference task.
Rather than performing a discrete inference task that delivers one label per variable, we
use a continuous function of the form x(p,!) which gives a score for each pairing of
a pixel to a label. This score can be intuitively understood as being proportional to the
log-odds for the pixel p taking the label [, if a ‘softmax’ unit is used to post-process X.

We denote the pixel-level ground-truth labeling by a discrete valued vectory € Y
where Y € {1,..., L}, and the inferred hypothesis by a real valued vector x € RY,
where N = P x L. Our formulation is posed as an energy minimization problem. In
the following subsections, we describe the form of the energy function, the inference
procedure, and the parameter learning approach, followed by some technical details
pertinent to using our framework in a fully convolutional neural network. Finally, we
describe a simpler formulation with pairwise weight sharing which achieves competi-
tive performance while being substantially faster. Even though our inspiration was from
the probabilistic approach to structured prediction (G-CRF), from now on we treat our
structured prediction technique as a Quadratic Optimization (QO) module, and will re-
fer to it as QO henceforth.

2.1 Energy of a hypothesis

We define the energy of a hypothesis in terms of a function of the following form:

B(x) = %XT(A + AI)x — Bx 1)

where A denotes the symmetric N x N matrix of pairwise terms, and B denotes the
N x 1 vector of unary terms. In our case, as shown in Fig. 1, the pairwise terms A and
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the unary terms B are learned from the data using a fully convolutional network. In
particular and as illustrated in Fig. 1, A and B are the outputs of the pairwise and unary
streams of our network, computed by a forward pass on the input image. These unary
and pairwise terms are then combined by the QO module to give the final per-class
scores for each pixel in the image. As we show below, during training we can easily
obtain the gradients of the output with respect to the A and B terms, allowing us to
train the whole network end-to-end.

Eq. 1 is a standard way of expressing the energy of a system with unary and pair-
wise interactions among the random variables [17] in a vector labeling task. We chose
this function primarily because it has a unique global minimum and allows for exact
inference, alleviating the need for approximate inference. Note that in order to make
the matrix A strictly positive definite, we add to it A times the Identity Matrix I, where
A is a design parameter set empirically in the experiments.

2.2 Inference

Given A and B, inference involves solving for the value of x that minimizes the energy
function in Eq. 1. If (A 4+ AI) is symmetric positive definite, then F(x) has a unique
global minimum [19] at:

(A+ M\)x = B. 2)

As such, inference is exact and efficient, only involving a system of linear equations.

2.3 Learning A and B

Our model parameters A and B are learned in an end-to-end fashion via the back-
propagation method. In the back-propagation training paradigm each module or layer
in the network receives the derivative of the final loss £ with respect to its output X,
denoted by %—g, from the layer above. %—ﬁ is also referred to as the gradient of x. The
module then computes the gradients of its inputs and propagates them down through
the network to the layer below.

To learn the parameters A and B via back-propagation, we require the expressions

of gradients of A and B, i.e. g—f‘ and g—é respectively. We now derive these expressions.

Derivative of Loss with respect to B To compute the derivative of the loss with respect
to B, we use the chain rule of differentiation: % = g—ég—f. Application of the chain

rule yields the following closed form expression, which is a system of linear equations:

oL oL

(A+AD = =2~

3)

When training a deep network, the right hand side g—é is delivered by the layer above,
and the derivative on the left hand side is sent to the unary layer below.
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Derivative of Loss with respect to A The expression for the gradient of A is derived

by using the chain rule of differentiation again: gf‘ = gfi gﬁ
Usmg the expressmn gfx = A(A—i—/\I) 1 B, substituting -2 S (A+AD) ™ = —(A+
M)~T ® (A + MXI)~1, and simplifying the right hand side, we arrive at the following
expression:
oL oL
— — 4
94~ 3B % )

where ® denotes the kronecker product. Thus, the gradient of A is given by the negative
of the kronecker product of the output x and the gradient of B.

2.4 Softmax Cross-Entropy Loss

Please note that while in this work we use the QO module as the penultimate layer of
the network, followed by the softmax cross-entropy loss, it can be used at any stage in a
network and not only as the final classifier. We now give the expressions for the softmax
cross-entropy loss and its derivative for sake of completeness.

The image hypothesis is a scoring function of the form x(p,[). For brevity, we
denote the hypothesis concerning a single pixel by x(1). The softmax probabilities for
the labels are then given by p; = % These probabilities are penalized by the

cross-entropy loss defined as £ = — ), y; log p;, where y; is the ground truth indicator

function for the ground truth label I*, i.e. y; = 0if l # I*, and y; = 1 otherwise. Finally

the derivative of the softmax-loss with respect to the input is given by: Bxf) =pr—Y.

2.5 Quadratic Optimization with Shared Pairwise Terms

We now describe a simplified QO formulation with shared pairwise terms which is
significantly faster in practice than the one described above. We denote by Ay, ,,. (i, 1)
the pairwise energy term for pixel p; taking the label /;, and pixel p; taking the label
l;. In this section, we propose a Potts-type pairwise model, described by the following

equation:
0 lLi=1
Ap, p.(liy 1) = S } 5)
p ,P]( J) {Api,pj li ?é lj-

In simpler terms, unlike in the general setting, the pairwise terms here depend on
whether the pixels take the same label or not, and not on the particular labels they take.
Thus, the pairwise terms are shared by different pairs of classes. While in the general
setting we learn PL x PL pairwise terms, here we learn only P x P terms. To derive
the inference and gradient equations after this simplification, we rewrite our inference
equation (A + AMI)x = B as,

X3 b,
X2 b2

s s

A A XL, br
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where xj, denotes the vector of scores for all the pixels for the class & € {1,---,L}.
The per-class unaries are denoted by by, and the pairwise terms A are shared between
each pair of classes. The equations that follow are derived by specializing the general
inference (Eq. 2) and gradient equations (Eq. 3,4) to this particular setting. Following
simple manipulations, the inference procedure becomes a two step process where we
first compute the sum of our scores » ; X, followed by x, i.e. the scores for the class
k as:

(AI+(L—1)A)ZX¢ = () (L= A)x =be =AY xic (8

Derivatives of the unary terms with respect to the loss are obtained by solving:

(AI+(L—1)/1) alfzz‘% © (- A)2L Z 9L i OE )

o) i 8Xi’ Bbk a 67xk a i 8b¢

Finally, the gradients of A are computed as

oL oL
0A . ki
Thus, rather than solving a system with A € RPLXPL we solve L + 1 systems with

A € RPXP Tn our case, where L = 21 for 20 object classes and 1 background class,
this simplification empirically reduces the inference time by a factor of 6, and the over-
all training time by a factor of 3. We expect even larger acceleration for the MS-COCO
dataset which has 80 semantic classes. Despite this simplification, the results are com-
petitive to the general setting as shown in Sec. 4.

3 Linear Systems for Efficient and Effective Structured Prediction

Having identified that both the inference problem in Eq. 2 and computation of pairwise
gradients in Eq. 3 require the solution of a linear system of equations, we now discuss
methods for accelerated inference that rely on standard numerical analysis techniques
for linear systems [20,21]. Our main contributions consist in (a) using fast linear system
solvers that exhibit fast convergence (Sec. 3.1) and (b) performing inference on multi-
scale graphs by constructing block-structured linear systems (Sec. 3.2).

Our contributions in (a) indicate that standard conjugate gradient based linear sys-
tem solvers can be up to 2.5 faster than the solutions one could get by a naive application
of parallel mean-field when implemented on the GPU. Our contribution in (b) aims at
accuracy rather than efficiency, and is experimentally validated in Sec. 4

3.1 Fast Linear System Solvers

The computational cost of solving the linear system of equations in Eq. 2 and Eq. 3
depends on the size of the matrix A, i.e. N x N, and its sparsity pattern. In our ex-
periments, while N ~ 105, the matrix A is quite sparse, since we deal with small
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10
= Jacobi
— Gauss Seidel
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(a) Linear Solver Statistics 107 ‘ ‘ ‘
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Fig.2: The table in (a) shows the average number of iterations required by various
algorithms, namely Jacobi, Gauss Seidel, Conjugate Gradient, and Generalized Mini-
mal Residual (GMRES) iterative methods to converge to a residual of tolerance 1076,
Figure (b) shows a plot demonstrating the convergence of these iterative solvers. The
conjugate gradient method outperforms the other competitors in terms of number of
iterations taken to converge.

4—connected, 8—connected and 12—connected neighbourhoods. While a number of
direct linear system solver methods exist, the sheer size of the system matrix A renders
them prohibitive, because of large memory requirements. For large problems, a num-
ber of iterative methods exist, which require less memory, come with convergence (to
a certain tolerance) guarantees under certain conditions, and can be faster than direct
methods. In this work, we considered the Jacobi, Gauss-Seidel, Conjugate Gradient,
and Generalized Minimal Residual (GMRES) methods [20], as candidates for iterative
solvers. The table in Fig. 2 (a) shows the average number of iterations required by the
aforementioned methods for solving the inference problem in Eq. 2. We used 25 images
in this analysis, and a tolerance of 10~°. Fig. 2 shows the convergence of these meth-
ods for one of these images. Conjugate gradients clearly stand out as being the fastest of
these methods, so our following results use the conjugate gradient method. Our findings
are consistent with those of Grady in [22].

As we show below, mean-field inference for the Gaussian CRF can be understood
as solving the linear system of Eq. 2, namely parallel mean-field amounts to using
the Jacobi algorithm while sequential mean-field amounts to using the Gauss-Seidel
algorithm, which are the two weakest baselines in our comparisons. This indicates that
by resorting to tools for solving linear systems we have introduced faster alternatives to
those suggested by mean field.

In particular the Jacobi and Gauss-Seidel methods solve a system of linear equations
Ax = B by generating a sequence of approximate solutions {x(k) }, where the current
solution x(*) determines the next solution x(¥+1).

The update equation for the Jacobi method [23] is given by

(k+1) , 1 (k)
e b; — ;aijxj ) (12)
VE2
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The updates in Eq. 12 only use the previous solution x(*), ignoring the most re-

(k) (k+1)
1 2

cently available information. For instance, z; ’ is used in the calculation of x

(k+1)
1

even though x is known. This allows for parallel updates for x. In contrast, the
Gauss-Seidel [23] method always uses the most current estimate of x; as given by:

1
(EEk-’_l) — — bl — Z aij:r;kH) — Z aijx;k) . (13)

7%} — .y
v 1<t 7>t

As in [24], the Gaussian Markov Random Field (GMREF) in its canonical form is
expressed as 7(x) o< exp { $x7 Ox + 6#7x}, where 6 and O are called the canonical pa-
rameters associated with the multivariate Gaussian distribution 7(x). The update equa-
tion corresponding to mean-field inference is given by [25],

i < — 0+ Oipjp- (14)

1
Ois i
The expression in Eq. 14 is exactly the expression for the Jacobi iteration (Eq. 12),
or the Gauss-Seidel iteration in Eq. 13 for solving the linear system p = —O710,
depending on whether we use sequential or parallel updates.

One can thus understand sequential and parallel mean-field inference and learning
algorithms as relying on weaker system solvers than the conjugate gradient-based ones
we propose here. The connection is accurate for Gaussian CRFs, as in our work and [2],
and only intuitive for Discrete CRFs used in [1,3].

3.2 Multiresolution graph architecture

We now turn to incorporating computation from multiple scales in a single system. Even
though CNNs are designed to be largely scale-invariant, it has been repeatedly reported
[26,27] that fusing information from a CNN operating at multiple scales can improve
image labeling performance. These results have been obtained for feedforward CNNs -
we consider how these could be extended to CNNs with lateral connections, as in our
case. A simple way of achieving this would be to use multiple image resolutions, con-
struct one structured prediction module per resolution, train these as disjoint networks,
and average the final results. This amounts to solving three decoupled systems which
by itself yields a certain improvement as reported in Sec. 4

We advocate however a richer connectivity that couples the scale-specific systems,
allowing information to flow across scales. As illustrated in Fig. 3 the resulting linear
system captures the following multi-resolution interactions simultaneously: (a) pairwise
constraints between pixels at each resolution, and (b) pairwise constraints between the
same image region at two different resolutions. These inter-resolution pairwise terms
connect a pixel in the image at one resolution, to the pixel it would spatially correspond
to at another resolution. The inter-resolution connections help enforce a different kind
of pairwise consistency: rather than encouraging pixels in a neighbourhood to have the
same/different label, these encourage image regions to have the same/different labels
across resolutions. This is experimentally validated in Sec. 4 to outperform the simpler
multi-resolution architecture outlined above.
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Fig. 3: Schematic diagram of matrix A for the multi-resolution formulation in Sec. 3.2.
In this example, we have the input image at 2 resolutions. The pairwise matrix A con-
tains two kinds of pairwise interactions: (a) neighbourhood interactions between pixels
at the same resolution (these interactions are shown as the blue and green squares), and
(b) interactions between the same image region at two resolutions (these interactions
are shown as red rectangles). While interactions of type (a) encourage the pixels in a
neighbourhood to take the same or different label, the interactions of type (b) encourage
the same image region to take the same labels at different resolutions.

3.3 Implementation Details and Computational Efficiency

Our implementation is fully GPU based, and implemented using the Caffe library. Our
network processes input images of size 865 x 673, and delivers results at a resolution
that is 8 times smaller, as in [3]. The input to our QO modules is thus a feature map
of size 109 x 85. While the testing time per image for our methods is between 0.4 —
0.7s per image, our inference procedure only takes ~ 0.02s for the general setting
in Sec. 2, and 0.003s for the simplified formulation (Sec. 2.5). This is significantly
faster than dense CRF postprocessing, which takes 2.4s for a 375 x 500 image on a
CPU and the 0.24s on a GPU. Our implementation uses the highly optimized cuBlas
and cuSparse libraries for linear algebra on large sparse matrices. The cuSparse library
requires the matrices to be in the compressed-storage-row (CSR) format in order to fully
optimize linear algebra for sparse matrices. Our implementation caches the indices of
the CSR matrices, and as such their computation time is not taken into account in the
calculations above, since their computation time is zero for streaming applications, or
if the images get warped to a canonical size. In applications where images may be
coming at different dimensions, considering that the indexes have been precomputed
for the changing dimensions, an additional overhead of ~ 0.1s per image is incurred to
read the binary files containing the cached indexes from the hard disk (using an SSD
drive could further reduce this). Our code and experiments are publicly available at
https://github.com/siddharthachandra/gcrf.

4 Experiments

In this section, we describe our experimental setup, network architecture and results.


https://github.com/siddharthachandra/gcrf

Fast, Exact and Multi-Scale Inference for Semantic Image Segmentation 11

Dataset. We evaluate our methods on the VOC PASCAL 2012 image segmentation
benchmark. This benchmark uses the VOC PASCAL 2012 dataset, which consists of
1464 training and 1449 validation images with manually annotated pixel-level labels
for 20 foreground object classes, and 1 background class. In addition, we exploit the
additional pixel-level annotations provided by [0], obtaining 10582 training images in
total. The test set has 1456 unannotated images. The evaluation criterion is the pixel
intersection-over-union (IOU) metric, averaged across the 21 classes.

Baseline network (basenet). Our basenet is based on the Deeplab-LargeFOV net-
work from [3]. As in [27], we extend it to get a multi-resolution network, which oper-
ates at three resolutions with tied weights. More precisely, our network downsamples
the input image by factors of 2 and 3 and later fuses the downsampled activations with
the original resolution via concatenation followed by convolution. The layers at three
resolutions share weights. This acts like a strong baseline for a purely feedforward net-
work. Our basenet has 49 convolutional layers, 20 pooling layers, and was pretrained
on the MS-COCO 2014 trainval dataset [28]. The initial learning rate was set to 0.01
and decreased by a factor of 10 at 5K iterations. It was trained for 10K iterations.

QO network. We extend our basenet to accommodate the binary stream of our net-
work. Fig. 1 shows a rough schematic diagram of our network. The basenet forms the
unary stream of our QO network, while the pairwise stream is composed by concatenat-
ing the 3" pooling layers of the three resolutions followed by batch normalization and
two convolutional layers. Thus, in Fig. 1, layers C; — Cj5 are shared by the unary and
pairwise streams in our experiments. Like our basenet, the QO networks were trained
for 10K iterations; The initial learning rate was set to 0.01 which was decreased by a
factor of 10 at 5K iterations. We consider three main types of QO networks: plain (QO),
shared weights (QO?) and multi-resolution (QO™"¢#).

4.1 Experiments on train+aug - val data

In this set of experiments we train our methods on the train+aug images, and eval-
uate them on the val images. All our images were upscaled to an input resolution of
865 x 673. The hyper-parameter A was set to 10 to ensure positive definiteness. We
first study the effect of having larger neighbourhoods among image regions, thus al-
lowing richer connectivity. More precisely, we study three kinds of connectivities: (a)
4—connected (QO,), where each pixel is connected to its left, right, top, and bottom
neighbours, (b) 8—connected (QOg), where each pixel is additionally connected to the
4 diagonally adjacent neighbours, and (c¢) 12—connected (QO;2), where each pixel is
connected to 2 left, right, top, bottom neighbours besides the diagonally adjacent ones.
Table 1 demonstrates that while there are improvements in performance upon increas-
ing connectivities, these are not substantial. Given that we obtain diminishing returns,
rather than trying even larger neighbourhoods to improve performance, we focus on
increasing the richness of the representation by incorporating information from various
scales. As described in Sec. 3.2, there are two ways to incorporate information from
multiple scales; the simplest is to have one QO unit per resolution (QO"?), thereby en-
forcing pairwise consistencies individually at each resolution before fusing them, while
the more sophisticated one is to have information flow both within and across scales,
amounting to a joint multi-scale CRF inference task, illustrated in Fig. 3. In Table 2, we
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Method| QO4| QOg|QO12 Method| QO| QO*|QO"**|QO™"**
IoU 76.36(76.40|76.42 IoU 76.36|76.59| 76.69| 76.93

Table 1: Connectivity ~ Table 2: Comparison of 4 variants of our G-CRF network.

Method | IoU|IoU after Dense CRF
Basenet |72.72 73.78
QO 73.41 75.13
QO° 73.20 75.41
QO™"%|73.86 75.46

Table 3: Performance of our methods on the VOC PASCAL 2012 Image Segmenta-
tion Benchmark. Our baseline network (Basenet) is a variant of Deeplab-LargeFOV [3]
network. In this table, we demonstrate systematic improvements in performance upon
the introduction of our Quadratic Optimization (QO), and multi-resolution (QO™"%%)
approaches. DenseCRF post-processing gives a consistent boost in performance.

compare 4 variants of our QO network: (a) QO (Sec. 2), (b) QO with shared weights
(Sec. 2.5), (c) three QO units, one per image resolution, and (d) multi-resolution QO
(Sec. 3.2). It can be seen that our weight sharing simplification, while being signifi-
cantly faster, also gives better results than QO. Finally, the multi-resolution framework
outperforms the other variants, indicating that having information flow both within and
across scales is desirable, and a unified multi-resolution framework is better than merely
averaging QO scores from different image resolutions.

4.2 Experiments on train+aug+val - test data

In this set of experiments, we train our methods on the frain+aug+val images, and
evaluate them on the fest images. The image resolutions and A values are the same as
those in Sec. 4.1. In these experiments, we also use the Dense CRF post processing
as in [3,29]. Our results are tabulated in Tables 3 and 4. We first compare our meth-
ods QO, QO?® and QO™"*® with the basenet, where the relative improvements can be
most clearly demonstrated. Our multi-resolution network outperforms the basenet and
other QO networks. We achieve a further boost in performance upon using the Dense
CRF post processing strategy, consistently for all methods. We observe that our method
yields an improvement that is entirely complementary to the improvement obtained by
combining with Dense-CRF.

We also compare our results to previously published benchmarks in Table 4. When
benchmarking against directly comparable techniques, we observe that even though we
do not use end-to-end training for the CRF module stacked on top of our QO network,
our method outperforms the previous state of the art CRF-RNN system of [ 1] by a mar-
gin of 0.8%. We anticipate further improvements by integrating end-to-end CRF train-
ing with our QO. In Table 4, we compare our methods to previously published, directly
comparable methods, namely those that use a variant of the VGG [30] network, are
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trained in an end-to-end fashion, and use structured prediction in a fully-convolutional
framework.

Method mean loU (%)
Deeplab-Cross-Joint [29] 73.9
CRFRNN [1] 74.7
Basenet 73.8
QO 75.1
QO? 75.4
QQmres 75.5

Table 4: Comparison of our method with directly comparable previously published ap-
proaches on the VOC PASCAL 2012 image segmentation benchmark.

4.3 Experiments with Deeplab-V2 Resnet-101

In this section we use our Potts-type model alongside the deeplab-v2 [32] Resnet-101
network. This network is a 3 branch multi-resolution version of the Resnet-101 net-
work from [31]. It processes the input image at 3 resolutions, with scaling factors of
0.5,0.75, and 1.0, and then combines the network responses at the different resolutions
by upsampling the responses at the lower scales to the original scale, and taking an
element-wise maximum of the responses corresponding to each pixel. We learn Potts
type shared pairwise terms, and these pairwise terms are drawn from a parallel Resnet-
101 network which has layers through conv-1 to res5c, and processes the input
image at the original scale. Table 5 reports quantitative results on the PASCAL VOC
2012 test set. We show some qualitative results in Fig. 4. It can be seen that our method
refines the object boundaries, leading to a better segmentation performance.

Method mean loU (%)
Deeplab-v2 + CRF [32] 79.7
(o]0 79.5
QO° + CRF 80.2

Table 5: Performance of our Potts type pairwise terms on the VOC PASCAL 2012 test
set with the deeplab-v2 Resnet-101 network.

5 Conclusions and Future Work

In this work we propose a quadratic optimization method for deep networks which can
be used for predicting continuous vector-valued variables. The inference is efficient and
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(a) image (b) unary (c) output (d) probability

Fig. 4: Qualitative results when our Potts type pairwise terms are used in combination
with the deeplab-V2 Resnet-101 network. Column (a) shows the input image, (b) shows
the heatmap of the unary scores, (c) shows the heatmap of the scores after inference,
and (d) shows the softmax probabilities. We notice that the object boundaries are sig-
nificantly finer after incorporating cues from the pairwise terms.

exact and can be solved in 0.02 seconds on the GPU for each image in the general set-
ting, and 0.003 seconds for the Potts-type pairwise case using the conjugate gradient
method. We propose a deep-learning framework which learns features and model pa-
rameters simultaneously in an end-to-end FCN training algorithm. Our implementation
is fully GPU based, and implemented using the Caffe library. Our experimental results
indicate that using pairwise terms boosts performance of the network on the task of
image segmentation, and our results are competitive with the state of the art methods
on the VOC 2012 benchmark, while being substantially simpler. While in this work we
focused on simple 4 — 12 connected neighbourhoods, we would like to experiment with
fully connected graphical models. Secondly, while we empirically verified that setting
a constant A parameter brought about positive-definiteness, we are now exploring ap-
proaches to ensure this constraint in a general case. We intend to exploit our approach
for solving other regression and classification tasks as in [33,34].

Acknowledgements This work has been funded by the EU Projects MOBOT FP7-ICT-
2011-600796 and I-SUPPORT 643666 #2020.
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(a) Image (b) Basenet  (c) Basenet + DCRF  (d) QO™"** (e) QO™"*® + DCRF

Fig.5: Visual results on the VOC PASCAL 2012 test set. The first column shows the
colour image, the second column shows the basenet predicted segmentation, the third
column shows the basenet output after Dense CRF post processing. The fourth column
shows the QO™ predicted segmentation, and the final column shows the QO™"**
output after Dense CRF post processing. It can be seen that our multi-resolution network
captures the finer details better than the basenet: the tail of the airplane in the first
image, the person’s body in the second image, the aircraft fan in the third image, the
road between the car’s tail in the fourth image, and the wings of the aircraft in the
final image, all indicate this. While Dense CRF post-processing quantitatively improves
performance, it tends to miss very fine details.
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