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Abstract

Basing on the maximum entropy production principle, the in uence of subgrid scales
on the ow is presented as the harmonic dissipation accompanied by the backscattering
of the dissipated energy. This parametrization is tested on the shallow water model
in a square box. The closure problem is analyzed basing on thebalance between the
dissipation of energy and its backscattering. Results of th is model on a coarse resolution
grid are compared with the reference simulation at four time s higher resolution. It is
shown that the mean ow is correctly recovered, as well as var iability properties, such
as eddy kinetic energy �elds and its spectrum.

Keywords: Subgrid scales; Backscattering; Shallow water model.

1 Introduction

The necessity to discretize the model equations on �nite-resolution spatial and temporal grids
implies the existence of subgrid processes, i.e. those which are not resolved by the grid and
thus excluded from any explicit simulation. Among such processes one can cite the molecular
di�usion and viscosity, three-dimensional turbulence, convectionand the unresolved portion
of the spectrum of mesoscale turbulent eddies.

The earliest attempts to include some of the e�ects of smaller-scaleprocesses on the
larger scales date back to Boussinesq and Reynolds. Boussinesq [Boussinesq(1877)] formed
hypothesis that there exists some analogy between molecular and turbulent viscosity. He
claimed that, analogically to the Newton's law, it is possible to express the turbulent stress
in the similar way as the shear stress.

Reynolds [Reynolds(1895)] decomposed hydrodynamic variables into large-scale and smaller-
scale components supposing that these scales are clearly separated in spectral space. Ana-
lyzing the inuence of small-scale processes, he derived the Reynolds stress tensor composed
by correlations of small-scale variables representing the mean turbulent momentum uxes
and shearing stresses.

Dealing with the Reynolds stress tensor, we get a so-called closure problem. System can-
not be closed directly by equations for Reynolds stresses becauseequations contain higher
order correlations. Using the Boussinesq hypothesis, we can introduce the turbulent (or
eddy) viscosity and approximate the Reynolds stress tensor by means of the large-scale vari-
ables. Despite considerable di�erence between molecular and turbulent viscosity, Boussinesq
closure gives satisfying results in prediction of simple ows at moderate resolution.

Accurate simulation of more complex ows at higher resolutions requires a �ner parametriza-
tion of subgrid-scale eddies, that's why the eddy-viscosity turbulence models are the subject
of thousands of papers in the XXth century. It is absolutely impossible to cite even the
most important of them. However, overwhelming majority of these papers discuss various
formulations of the dissipation operator without any energetically positive impact to large
scale ow. Indeed, the dissipation must be the principal inuence of small scales. Analyz-
ing quasi-geostrophic turbulence, Charney [Charney(1971)] hasshown that its fundamental
property is the transfer of enstrophy to smaller and smaller scalesby non-linear advection.
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Enstrophy, consequently must be removed near the grid scales simulating a net transfer to
subgrid scales in order to avoid accumulation.

However, if the model resolution is su�ciently �ne, a parametrizatio n of eddy-viscosity
dissipates not only enstrophy, but also a part of kinetic energy. This energy transfer may be
considered as undesirable or spurious because it results in too little grid-scale eddy kinetic
energy and too weak eddy induced transport.

The idea of possible negative eddy viscosity was introduced by Kraichan in [Kraichnan(1976)],
who studied two- and three-dimensional turbulence at large and small scales. Leith [Leith(1990)]
introduced the stochastic backscatter term to simulate the subgrid scales contribution to the
energy balance by injecting noise into the system. Another stochastic backscatter forcing
was proposed in [Shutts(2005)] and tested in frames of ensemble forecasting by the ECMWF
model.

Other promising approaches to avoid energy dissipation on sub-gridscales have been
discussed during last 20 years. So far, it is only possible to parametrize the statistical ef-
fects of the subgrid eddies, statistical closure theory seems to be a natural formulation for
developing self-consistent subgrid models. Numerous experimentshave been carried out
in frames of barotropic or two-layer QG models. Thus, in [Frederiksen and Davies(1997),
Frederiksen and Kepert(2006), Zidikheri and Frederiksen(2009)] several stochastic backscat-
ter terms are developed and used in the spectral approximation ofthe barotropic or two-
layer quasi-geostrophic model of the atmosphere. Statistics of the model solution on the high
resolution grid is used in [Cooper and Zanna(2015), Mana and Zanna(2014)] in order to in-
troduce an independent of the large-scale ow spatially varying forcing term that represents
the transient eddies inuence in an idealised barotropic double gyre con�guration.

The requirements of the energy conservation and the maximum entropy production has
been used in [Kazantsev et al.(1998)Kazantsev, Sommeria, and Verron] to simulate the in-
uence of subgrid scales in the barotropic vorticity equation. It has been shown that the
mean ow is correctly recovered, as well as the variability properties, such as the kinetic
energy �elds and the eddy ux of potential vorticity compared with the reference simulations
at a resolution four times higher. However, generalization of this approach to shallow wa-
ter and primitive equations models faced some di�culties [Chavanis andSommeria(2002),
Polyakov(2001)].

Another interesting approach that must be mentioned is the alpha-model approach
[Nadiga and Bouchet(2011)]. Alpha-model arises from Lagrangian averaging of Navier-
Stokes equations [Nadiga and Shkoller(2001)]. It includes a modi�cation of the nonlinear
advection and can be considered as the regularization approach tomodelling turbulence.
The alpha-model has been used to simulate the barotropic ow forced by double gyre wind
stress [Holm and Nadiga(2003)]. The results show that the alpha term leads to more realis-
tic gyre structures and smoother solutions at coarse resolution with lower value of viscosity.
However, in some cases, the alpha sub-grid term may cause a forward transfer of energy and
enstrophy to scales larger than the �lter scale leading to the accumulation of enstrophy at
small scales [Graham and Ringler(2013)].

An idea to use an explicit forcing that simulates the energy ux from small scales in-
tended to compensate spurious energy dissipation, while maintainingdissipation of enstro-
phy has been expressed in [Jansen and Held(2014)]. Two kind of suchforcings (also called
backscatter term) have been discussed. One of them represents an uncorrelated Gaussian
noise and another one use a negative Laplacian viscosity (while the general positive dissipa-
tion is assured by a bilaplacian). This idea was further developed in [?] by implementation
in a primitive-equation model and by the formulation of a new prognostic variable that
accounts for the sub-grid budget of the eddy kinetic energy, allowing to better represent
spatial inhomogeneities in the eddy �eld. These backscatter forcings are tested in frames of
two-layer quasi-geostrophic model [Jansen and Held(2014)] and inan idealized con�guration
of a primitive equation ocean model [?], and are shown to improve the simulations at typical
eddy-permitting resolutions.

However, it is quite di�cult to understand either physical or numeric al basis of these
compensative uxes. No physical background is presented to advocate either stochastic
or deterministic energy backscatter. The approach can only be used with the biharmonic
dissipation while numerous models with insu�cient resolution use a Laplacian.
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In this paper we generalize the approach described in [Kazantsev etal.(1998)Kazantsev, Sommeria, and
to be used in primitive equations ocean models. The approach was tested in frames of
barotropic divergenceless ow. However, in real world applicationswe have to work with
more complex ows. Primitive equations represent now the basis of the majority of global
ocean models and a great part of regional ones. That's why the maingoal of our e�orts will
be focused on these equations.

The main idea expressed in [Kazantsev et al.(1998)Kazantsev, Sommeria, and Verron] is
based on the supposition that potential vorticity may have a �ne, subgrid-scale structure
while streamfunction is supposed to be smooth. That means we suppose that only vorticity
has considerable variations within a grid cell. These variations are described by a probability
density function that determines the entropy. Together with the maximization of the entropy
production, we require strict conservation of the kinetic energy. In frames of barotropic
vorticity equation, there is no ambiguity in choice of these two variables.

Generalization of this approach to more complex models leads to suchan ambiguity.
Even working with a shallow water model we must choose either potential or relative vor-
ticity to have a subgrid-scale variations and either kinetic or total energy to be conserved.
Moreover, shallow water ow is not completely divergenceless. It has been supposed in
[Chavanis and Sommeria(2002)] that divergence in shallow water model can be neglected in
front of potential vorticity. But, this hypothesis results in no dive rgence dissipation at grid
scales and leads to numerical instability. Consequently, we have to include the divergence
in the list of variables having a subgrid structure.

The choice of potential vorticity as a principal variable having the subgrid variations in
frames of barotropic or shallow water models may be motivated by the fact that potential
vorticity in these models is simply transported by advection. Hence,we may suppose that
its subgrid-scale patches are also transported and conserved bythe explicit velocity �eld.
However, if we add the divergence to the list of variables having a subgrid structure, this
advantage can no longer be used: no form of the divergence can beconsidered as transported.
Moreover, even low but non-null divergence mixes subgrid vorticitypatches and we can no
longer suppose that they are transported.

Ambiguity appears also in the choice of the conserved variable. In frames of the barotropic
vorticity the only energy that can be conserved is the kinetic one. The shallow water system
itself conserves the sum of the kinetic and potential energies. It is, consequently, reason-
able to suppose that subgrid-scale processes would also keep the total energy, allowing the
transfer of kinetic energy to potential one and vice versa. However, it is the spurious kinetic
energy loss at small scales that we need to cancel. Potential energy is neither transported
toward small scales by the model dynamics, nor undergo spurious dissipation at these scales.
Moreover, the shallow water model is considered just as a step to primitive equations full
physics models that have more complex energy balance. Instead ofanalyzing this balance in
detail, in this paper we choose to preserve the kinetic energy as a quantity to be conserved
both in shallow water and primitive equations.

The purpose of this paper is to use the maximum entropy productionprinciple (MEPP)
for the shallow water model and to point out the way to use this principle for primitive
equations with both harmonic and biharmonic dissipation.

The paper is organized as follows. In the second section we describeand discuss the
shallow water model, de�ne the probability density functions and develop the maximum
entropy production principle. In the third section we perform numerical experiments with
the model in a square box with a set of di�erent resolution grids and compare results.

2 Model setup

We consider a shallow water model in the conventional formulation

@u
@t

= v(� + f ) �
@B
@x

� bu+ Du + � x

@v
@t

= � u(� + f ) �
@B
@y

� bv+ D v + � y (1)
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@h
@t

= �
@hu
@x

�
@hv
@y

with impermeability and no-slip boundary conditions. Here, u and v denote zonal and
meridional velocities, h is the sea surface elevation,� = @v

@x�
@u
@y; � = @u

@x+
@v
@yare relative

vorticity and divergence, and B = u2 + v2

2 + gh is the Bernoulli potential. Coriolis parameter
f simulates the e�ect of the Earth rotation, coe�cient b parametrizes the bottom drag and
� x ; � y represent the wind stress applied to the surface of the ocean.Du and D v describe
the parametrization of the inuence of subgrid scales. Conventionally, these terms represent
Laplacian dissipation responsible for the enstrophy sink near the grid scales:

Du = A� u; D v = A� v (2)

We shall consider Du ; D v as a di�usive ux that represents the inuence of subgrid
scales on the dynamics rather than a simple Newtonian sink of energyand enstrophy. To
rede�ne the terms Du and D v , we suppose that relative vorticity � and divergence� have
a considerable subgrid-scale structure. In other words, we suppose that probability density
functions (PDF) � i;j (�; t ) and � i;j (�; t ) can be de�ned in a grid cell associated with the
node i; j . The variable � has the same dimension 1=s as vorticity and divergence. Products
� i;j (�; t )d� and � i;j (�; t )d� show the probability to �nd vorticity or divergence values in the
interval [ �; � + d� ] in the grid cell i; j .

Both PDF are normalized in each cell

1Z

�1

� i;j (�; t )d� =

1Z

�1

� i;j (�; t )d� = 1 (3)

and the cell-mean values of vorticity and divergence are calculated as

� i;j =

1Z

�1

� i;j (�; t )�d�; � i;j =

1Z

�1

� i;j (�; t )�d� (4)

Below, we focus our attention on the di�usive term supposing that this term represents
the principal inuence of subgrid scales on the ow. We do not take into account advection,
forcing and bottom friction terms considering these processes aslarge scale ones inuencing
both grid and subgrid scales in the same way. We suppose that no particular subgrid-scale
e�ect is produced by these terms.

To obtain the di�usion equations for � and � , we calculate the curl and the divergence
of the di�usive part of �rst two equations of (1) and write equation s of di�usion of � and �

@�
@t

=
@Dv

@x
�

@Du

@y
@�
@t

=
@Du

@x
+

@Dv

@y
(5)

So far, Du ; D v are considered as the di�usive ux that represents the inuence of subgrid
scales, we rewrite their formulation in form that is similar to (4):

Du =
Z

J u �d�; D v =
Z

J v �d� (6)

Combining (5),(6) and (4) we get the di�usion equations for the probability density
functions:

Z
@�
@t

�d� =
Z �

@J v

@x
�

@J u

@y

�
�d� (7)

Z
@�
@t

�d� =
Z �

@J u

@x
+

@J v

@y

�
�d�
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To develop an explicit form of these uxes, we impose several requirements. The �rst and
the quite evident requirement is imposed following [Kazantsev et al.(1998)Kazantsev, Sommeria, and Verron
It consists in maximizing of entropy production by the subgrid scales. However, accepting
that both vorticity and divergence have the subgid scale variability, we get two PDFs � and
� and two entropies de�ned by these PDFs:

S� = �
Z Z

� (�; t ) ln � (�; t )d�dxdy; S � = �
Z Z

� (�; t ) ln � (�; t )d�dxdy (8)

It is impossible to maximize both entropies simultaneously. We have a choice either to get
the di�usive ux maximizing the sum of them or produce two separate uxes that maximize
S� or S� and use the sum of these uxes. The second way is used in this paper.

The second requirement is imposed to limit the corresponding norm ofdi�usive ux: N �

when we maximize the production ofS� and N � otherwise.

N � =
Z �

(J u )2 + ( J v )2

2�

�
d�dxdy = const

N � =
Z �

(J u )2 + ( J v )2

2�

�
d�dxdy = const (9)

As it is discussed in the introduction, the third requirement for both S� and S� maxi-
mization aims at avoiding of the spurious energy sink. We impose the conservation of the
kinetic energy

E =
Z

u2 + v2

2
dxdy = const (10)

rather than total energy that is really conserved by the whole system.
This variational problem is treated by introducing Lagrange multiplier s A and � so that

the condition

� N + A
�

�
@S
@t

+ ��
@E
@t

�
= 0 (11)

must be satis�ed at each time t for any variations � J .
The time derivative of the entropy S� writes

@S�
@t

= �
Z

@�
@t

(ln � + 1) d�dxdy = �
Z �

@J v

@x
�

@J u

@y

�
(ln � + 1) d�dxdy =

=
Z

J v

�
@�
@x

�
J u

�
@�
@y

d�dxdy (12)

and similarly for S�

@S�
@t

=
Z

J u

�
@�
@x

+
J v

�
@�
@y

d�dxdy (13)

thanks to integration by parts and to no ux boundary conditions.
Energy derivative can be calculated using (1) and (10) taking into account di�usive terms

only

@E
@t

=
@
@t

Z
u2 + v2

2
dxdy =

Z �
u

@u
@t

+ v
@v
@t

�
dxdy =

=
Z

(uJ u + vJ v )�d�dxdy = 0 : (14)

Taking into account (12) and (14), the equality (11) writes for var iations of N � and S�

as
Z

J u � J u + J v � J v

�
d�dxdy = A

� Z �
� J v

�
@�
@x

�
� J u

�
@�
@y

�
d�dxdy +

+ �
Z �

u� J u + v� J v

�
�d�dxdy

�
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and similarly for variations of N � and of S� . Knowing that all � J are independent and
non-null, we may consider each variation separately. We get the uxthat maximizes the
entropy S�

J u

�
= � A

�
1
�

@�
@y

+ �u� + F1(x; y)
�

J v

�
= A

�
1
�

@�
@x

+ �v� + F2(x; y)
�

and another ux that maximizes entropy S�

J u

�
= A

�
1
�

@�
@x

+ �u� + F3(x; y)
�

J v

�
= A

�
1
�

@�
@y

+ �v� + F4(x; y)
�

To determine free termsF (x; y), we multiply each equation either by � or by � and integrate
over � . Taking into account (3), (4) and

R
J d� = 0, we get

� �u� = F1(x; y); � �v� = F2(x; y); � �u� = F3(x; y); � �v� = F4(x; y):

As it is noted above, the total di�usive ux is de�ned as the sum of tw o uxes that
maximize S� and S� .

J u = A
�

@�
@x

�
@�
@y

+ �u (� (� � � ) + � (� � � ))
�

J v = A
�

@�
@y

+
@�
@x

+ �v (� (� � � ) + � (� � � ))
�

To calculate the parameter � we use the condition of the energy conservation (14) by
the di�usive ux

@E
@t

= 0 =
Z

(uJ u + vJ v )�d�dxdy =

= A
Z �

u
@�
@x

� u
@�
@y

+ v
@�
@y

+ v
@�
@x

+ � (u2 + v2)( � (� � � ) + � (� � � ))
�

�d�dxdy

Combining all terms with � and integrating in � we get
Z �

u
@�
@x

� u
@�
@y

+ v
@�
@y

+ v
@�
@x

�
dxdy = � �

Z �
u2(q� + q� ) + v2(q� + q� )

�
dxdy

where q� and q� denote the dispersion of distribution of divergence and vorticity parcels
within each grid cell:

q� =
Z

� (� � � )�d� =
Z

�� 2d� � �
Z

��d� = � 2 � � 2

q� =
Z

� (� � � )�d� = � 2 � � 2 (15)

where overline denotes an average over a grid cell.
Consequently, the inuence of subgrid scales (6) in the model (1) isdetermined by

Du =
Z

J u �d� = A
�

@�
@x

�
@�
@y

+ �u (q� + q� )
�

= A
�

� u + �uq
�

D v =
Z

J v �d� = A
�

@�
@y

+
@�
@x

+ �v (q� + q� )
�

= A
�

� v + �vq
�

(16)
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where � is de�ned by

� = �

R
�

u( @�
@x� @�

@y) + v( @�
@y+

@�
@x)

�
dxdy

R
q(u2 + v2)dxdy

(17)

and q = q� + q� (15) contains the second statistical moment and require a closurehypothesis.
The simplest one is to suppose thatq = const in any grid cell. The value of this constant is
not important because it is simpli�ed in (16) and in the denominator of � (17).

Alternative idea consists in the assumption that the dispersion in thecell is proportional
to the square of the di�erence of mean values in the neighboring cells. This implies larger
distributions in regions with high gradients of vorticity and divergence.

qi;j �
�

(� i +1 ;j � � i � 1;j )2 + ( � i;j +1 � � i;j � 1)2
�

+
�

(� i +1 ;j � � i � 1;j )2 + ( � i;j +1 � � i;j � 1)2
�

(18)

Although we suppose that qi;j is proportional to the square of the di�erence, the propor-
tionality multiplier may be chosen as one for the same reason as before: this multiplier will
be simpli�ed with the denominator of � .

We can note here that the hypothesis of a constantq implies that the backscattering
term is weighted by u and v only. The energy ux from subgrid scales is assumed to be
proportional to the grid energy. This reasonable hypothesis, however, may not �t well to
simulation of turbulent ows, especially with strong boundary layers and jet streams. In this
case, it may be reasonable to use the expression (18) that ensures an additional weighting
in regions of high gradients of� and � , i.e. regions of high dissipation. The injection of
energy in this case is increased in jet streams and boundary layers and reduced in regions
of laminar ow.

Another hypothesis that we can use for �ner tuning of the backscattering process consists
in adding a positive constant to qi;j separating its value from zero. This constant allows
some positive variance of the divergence and vorticity within each grid cell even in laminar
regions. Choosing this constant either small or big with respect to the vorticity gradient,
we can obtain the backscatter pattern close to the pattern de�ned either by (18) or by the
condition q = const. Some intermediate value may help us to better balance the energy
dissipation and its compensation by backscattering. This tuning, however, is beyond the
scope of this paper because we study just the principal properties of this backscattering in
frames of a simple shallow water model.

Coe�cient � de�ned by (17) ensures exact compensation of the dissipated energy. This is
absolutely necessary when the purpose is to �nd the statistical equilibrium state of inviscid
unforced ow as in [Chavanis and Sommeria(2002), Robert and Sommeria(1992)]. Working
with forced and dissipative models may require another balance between sink and compen-
sation of the kinetic energy. Bottom friction or vertical dissipation , being the only energy
sink, may bring the ow to another regime. Thus, in this paper we mult iply � by additional
coe�cient 0 :7 and inject only 70% of dissipated energy in order to avoid emerging of spurious
wave regime non observed at high resolution.

3 Shallow water model in the square box.

Proposed method is tested in the square-box model con�guration. We consider 30� � 30�

box placed in the mid-latitudes region 24� � ' � 54� . The model (1) is forced by the zonal
wind stress

� x = � 0:18
N
m2 cos

2� (' � 24� )
30� ; � y = 0

Bottom friction parameter is chosen as b = 10 � 7s� 1 and the reduced gravity as g =
0:02m=s2. Beta-plane approximation is used for the Coriolis parameter

f = 6 � 10� 5
�

1 +
(' � 24� )

30�

�
s� 1
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Experiments are carried out on the set of four grids with di�erent spatial resolutions
varying from 0:6� to 0:075� . The coarsest grid counts 50� 50 nodes and the �nest one |
400� 400. The same coe�cient A was used in experiments with the conventional di�usion (2)
and with the MEPP parametrisation of subgrid scales (16). This coe� cient was, however,

adapted to the resolution: lower value is used at �ner resolution starting at A = 60 m2

s at

the resolution 0:075� up to A = 480 m2

s at the coasest resolution. At each resolution in
these tests we compare the model ow obtained using classical Laplacian dissipation (2) and
MEPP parametrization (16).

In each experiment and for each subgrid scales parametrization weperform a spin-up of
the model during 10 years. After that, 50 years model run is analyzed and averages over
this period are discussed.

The model solution on the �nest grid will be used below as the reference one. The grid
is composed of 400� 400 nodes provides the 0:075� resolution of the 30� � 30� square. Only
conventional Laplacian (2) dissipation is used in this experiment with the lowest possible

coe�cient A = 60 m2

s . We consider averaged sea surface height (SSH) and eddy kinetic
energy (EKE) shown in �g.1.

E =
1
2

� Z 60yr

10yr
(u2 + v2)dt �

� Z 60yr

10yr
u dt

� 2

�
� Z 60yr

10yr
v dt

� 2�
(19)

A B

Figure 1: 50 years mean sea surface height (A) and eddy kinetic energy (B) in the experiment
with 0:075� resolution.

The ow is characterized by the strong western boundary currents with formation of the
jet ux near the center of the square. Velocity of the ow near th e western wall and in the
jet exceeds 1m=s. The jet is characterized by the strong and unstable meandering that
de�nes the major part of the ow variability. However, the maximum of eddy kinetic energy
(�g.1B) is situated near the western boundary showing the impact of the variation of the
separation point of the jet stream from the wall.

Experiments on the grid with two times coarser resolution (200� 200 nodes with 0:15�

resolution) show a quite similar ow con�guration with slightly lower var iability (�g.2).
Eddy kinetic energy lost 1=3 of its former value both in the meandering region and at the
maximum point near the western boundary. We can also note that the jet stream is ampli�ed
in the Western half of the square (to the west from the� 45� longitude) and reduced in the
Eastern half. Eddy kinetic energy pattern also shows insu�cient variability to the East from
� 39� longitude.

Of course, this is explained by lower resolution and higher dissipation coe�cient A =

120m2

s that is necessary to avoid numerical noise. In order to compensate excessive sink of
the kinetic energy (and particularly eddy kinetic energy) we use theMEPP principle and
add the backscattering term (16) with the weight � de�ned by (17) assuming here thatq in
these equations is a constant in any grid cell.
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A B

Figure 2: Average sea surface height (A) and eddy kinetic energy (B) in the experiment
with 0:15� resolution and conventional viscosity.

Indeed, adding the backscattering term results in a more energetic ow. Eddy energy in
�g.3 considerably increases, exceeding not only the energy obtained with the conventional
viscosity but also the reference experiment with double resolution.The SSH pattern also
shows an ampli�ed dipole. However, only the highest point of the sea surface becomes higher
rather than the length of the jet.

A B

Figure 3: Average sea surface height (A) and eddy kinetic energy (B) in the experiment
with 0:15� resolution and MEPP viscosity with constant q.

In order to make the geographical distribution of EKE closer to the reference one and
to increase the length of the jet, we apply more sophisticated backscattering allowing the
second statistical moment to vary from one grid cell to another. As it has been noted, we
use the approximation (18) assuming that dispersions of� and � must be bigger in regions
with big gradients of � and � .

Sea surface height and eddy kinetic energy obtained in the experiment with this parametriza-
tion are shown in �g.4. One can see both shapes and values in this �gure are closer to the
reference experiment shown in �g.1.

If we reduce the resolution once more, passing to 100� 100 nodes grid with 0:3� resolution,
then using conventional di�usion would result in a similar SSH shape withdrastically reduced
variability shown in �g.5. Eddy kinetic energy completely lost the maximu m near the
boundary and only a little variability remained in the jet area.

Using MEPP viscosity with variable dispersionq allows us to bring the low-resolution ow
closer to the simulation obtained at high resolution. The gradient of SSH is overestimated
and the length of the jet is smaller than in the reference experiment, but the EKE shows
developed variability in the jet region and reappeared maximum near the western boundary
at the point of jet stream separation from the wall.
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A B

Figure 4: Average sea surface height (A) and eddy kinetic energy (B) in the experiment
with 0:15� resolution and MEPP viscosity with variable q estimated according to (18).

A B

Figure 5: Average sea surface height (A) and eddy kinetic energy (B) in the experiment
with 0:3� resolution and conventional viscosity.

At the resolution 0:6� the solution is stationary with any subgrid scales parametrization.
Using MEPP approach helps to increase the length of the jet in the middle of the square
box (see �g.7). We can note that using constantq provides a longer jet stream than with
the variable q. However, comparing the jet length with higher resolution experiments shown
above, we note that the length is better approximated using backscattering with variable q
obtained according to (18). The SSH shape obtained with the constant q overestimates also
the maximum and minimum sea surface height.

On the other hand, no variability is added to the ow by MEPP paramet rization and
the ow remains stationary. The resolution is too coarse to allow anyvariability.

Consequently, we see that MEPP backscattering can improve the model solution and
bring a low resolution ow closer to the high resolution one. However,there exists a limit
grid resolution, apparently situated between 0:3� and 0:6� , that makes the backscattering less
useful. This limit resolution is, in fact, a well known Rossby deformation radius R =

p
gH=f

that is equal to 50km for parameters given above. It is well known that a shallow water model
on the C-grid cannot correctly represent the inertia-gravity waves and su�ers from grid-scale
noise when the resolution is lower that the Rossby radius. This property can be traced back
to the spatial averaging of the Coriolis terms on the C-grid [Arakawaand Lamb.(1977),
Fox-Rabinovitz(1991)].
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Figure 6: Average sea surface height (A) and eddy kinetic energy (B) in the experiment
with 0:3� resolution and MEPP viscosity with variable q estimated according to (18)..

A B C

Figure 7: Stationary sea surface height in the experiment with resolution 0:6� . Conventional
dissipation (A), MEPP parametrization with constant (B) and with va riable (18) q (C).

4 Energy balance

In order to analyze the energy balance between dissipation and backscattering terms, we
write the equation for the evolution of the kinetic energy (10) writin g the sum of the �rst
two equation multiplied by u and v respectively

@E
@t

=
1
2

Z �
� u

@B
@x

� v
@B
@y

� b(u2 + v2) + � x u + � y v + uD u + vDv

�
dxdy

So far, we are interested in the sources and sinks of the kinetic energy provided by subgrid
scales, we consider only two terms containingDu and D v . Substituting their explicit form
(16), we get

@Esubgrid

@t
=

1
2

Z �
uD u + vDv

�
dxdy =

=
A
2

Z �
u� u + v� v + �q (u2 + v2)

�
dxdy =

= �
A
2

Z ��
@u
@x

� 2

+
�

@u
@y

� 2

+
�

@v
@x

� 2

+
�

@v
@y

� 2�
dxdy + (20)

+
A
2

Z
�q (u2 + v2)dxdy (21)

thanks to integration by parts and impermeability boundary conditio ns. Expression (20)
shows the dissipation of energy due to the �rst term of the subgridscale inuence and (21)
| the compensation of energy due to backscattering.

To see the regional distribution of the energy sources and sinks, we plot the 50 years
mean expressions under integral in (20) and (21). The value of these terms shows signi�cant
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spatial variance, both dissipation and backscattering in turbulent regions is 106 times bigger
than in regions where the ow is laminar. To better see this wide rangein the same picture,
we plot the decimal logarithm of these expressions.

One can see in �g.8A that in the reference experiment the highest dissipation is observed
in the western boundary layer where its value reaches 2:7 � 10� 6m2=s3. In the jet area,
we see one to two orders lower dissipation while outside the jet the laminar ow dissipates
at 10� 11 : : : 10� 12m2=s3 only. Moreover, the dissipation of energy is approximately of the
same order for both resolutions. Comparing the dissipation of the reference model in �g.8A
with the model on the 0:3� grid shown in �g.8B, we see that in the jet area and outside the
jet, the dissipation of the coarse resolution model is just 3 or 5 times higher. This can be
explained by the dissipation coe�cient which is also 4 times bigger at thecoarse resolution.
The only exception is observed in the Western boundary layer wherethe �ne grid model
shows triple dissipation of energy thanks to �ner approximation of the boundary current.

A B

Figure 8: Decimal logarithm of the dissipation of energy in experiments with 0:075� (A) and
0:3� (B) resolutions.

Analyzing the compensative part of the energy balance (21), we compare backscattering
term with constant and variable approximations of the dispersionq obtained by the model
on the 0:3� grid. These pictures are shown in �g.9.

As it has been already mentioned, the energy backscattering with constant q is more
uniform than with the variable one. In the laminar ow area (on the Ea st), the dissipated
energy is reinjected at rate 10� 11m2=s3 while in the Western boundary current and in the
jet the backscattering reaches 8� 10� 8m2=s3.

The backscattering obtained using variableq shows more variance. In the Eastern part
of the square the backscattering is negligible with respect to the dissipation and the rate of
energy injection in the boundary layer is 8� 10� 7m2=s3. That means the backscattering
compensate the major part of the energy loss near the boundaryand in the jet stream
without inuencing the dissipation in the laminar ow regions.

We can note here that variableq approximation results in the negative energy balance
everywhere in the square box. Backscattering of energy is alwayslower than its dissipation.
In the laminar ow regions, the dissipation is 100 { 500 times bigger than the compensation
and in the region with considerable vorticity (jet area and boundary layer) the compensation
values either reach parity with the dissipation or remain 3-5 times lower.

Approximation q = const leads to the domination of the backscattering in front of dis-
sipation in laminar ow regions where the energy injection can be 30 times higher than
the dissipation. In the same time, the dissipation dominates 10 times the injection in
the boundary layer. We can say that the energy is pumped out fromthe turbulence and
reinjected in large-scale laminar ow. This property helps to achievethe statistical equi-
librium state in an unforced inviscid uid which is the goal of this approa ch formulated in
[Robert and Sommeria(1992), Chavanis and Sommeria(2002)]. However, using this method
to parametrize the subgrid-scale inuence to a more realistic ow without aiming at equi-
librium state, we should better introduce a local approximation of the PDF variance in a
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