Revisiting Goal Probability Analysis in Probabilistic Planning

Abstract : Maximizing goal probability is an important objective in probabilistic planning, yet algorithms for its optimal solution are severely underexplored. There is scant evidence of what the empirical state of the art actually is. Focusing on heuristic search, we close this gap with a comprehensive empirical analysis of known and adapted algorithms. We explore both, the general case where there may be 0-reward cycles, and the practically relevant special case of acyclic planning, like planning with a limited action-cost budget. We consider three different algorithmic objectives. We design suitable termination criteria, search algorithm variants, dead-end pruning methods using classical planning heuristics, and node selection strategies. Our evaluation on more than 1000 benchmark instances from the IPPC, resource-constrained planning, and simulated penetration testing reveals the behavior of heuristic search, and exhibits several improvements to the state of the art.
Type de document :
Communication dans un congrès
26th International Conference on Automated Planning and Scheduling, Jun 2016, London, United Kingdom. 2016, Proceedings of the 26th International Conference on Automated Planning and Scheduling. 〈http://icaps16.icaps-conference.org/〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01413035
Contributeur : Olivier Buffet <>
Soumis le : vendredi 9 décembre 2016 - 15:03:31
Dernière modification le : jeudi 11 janvier 2018 - 06:25:24
Document(s) archivé(s) le : jeudi 23 mars 2017 - 09:35:47

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01413035, version 1

Collections

Citation

Marcel Steinmetz, Joerg Hoffmann, Olivier Buffet. Revisiting Goal Probability Analysis in Probabilistic Planning. 26th International Conference on Automated Planning and Scheduling, Jun 2016, London, United Kingdom. 2016, Proceedings of the 26th International Conference on Automated Planning and Scheduling. 〈http://icaps16.icaps-conference.org/〉. 〈hal-01413035〉

Partager

Métriques

Consultations de la notice

366

Téléchargements de fichiers

50