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Mathematical and numerical modeling of plate
dynamics with rotational inertia

Francesco Bonaldi, Giuseppe Geymonat, Francoise Krasucki and
Marina Vidrascu

Abstract. We give a presentation of the mathematical and numerical treatment of plate
dynamics problems including rotational inertia. The presence of rotational inertia in the
equation of motion makes the study of such problems interesting. We employ HCT fi-
nite elements for space discretization and the Newmark method for time discretization in
FreeFEM++, and test such methods in some significant cases: a circular plate clamped all
over its lateral surface, a rectangular plate simply supported all over its lateral surface, and
an L-shaped clamped plate.

Keywords. Plates, Kirchhoff-Love, Rotational inertia, FreeFEM, HCT, Newmark.
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General notation

We denote by @ — R? a two-dimensional domain with smooth boundary T}
I'y < T is a measurable subset of I', with strictly positive length measure, and
I'j = I'\I'p. The outer unit normal and tangent vector fields on I" are denoted,
respectively, by n = (ny,n;) and 7 = (—ngp,n;). For ¢ a real-valued field de-
fined on Q, 0,1 = Vi -n and 0,4 = V1 - T denote its normal and tangential
derivatives on I'. The space dependence of a field is left tacit, unless noted other-
wise. The time derivative of a real- or vector-valued field ¢ is denoted by ¢, of
a function ® taking values in a Hilbert space by %. Finally, Sym(2) denotes the
space of symmetric second-order tensors in R2.

Introduction

In [6] the equations of plate models for magneto-electro-thermo-elastic sensors
and actuators have been deduced by an asymptotic development with respect to

This work has been partially supported by the French Agence Nationale de la Recherche (ANR)
under grant ARAMIS (Projet «Blanc», N. ANR 12 BS01-0021) (Analysis of Robust Asymptotic
Methods in Numerical Simulation in Mechanics).



2 F. Bonaldi, G. Geymonat, F. Krasucki and M. Vidrascu

the thickness 2e > 0 of the plate. A peculiar feature of the different models
concerns the flexural problem, governing the evolution of the transversal dis-
placement w of the plate, which occupies the closure of the three-dimensional
domain Q x (—e,e) in its reference configuration and whose kinematics is of
Kirchhoff-Love type. This problem is uncoupled from the membrane problem,
it takes into account an inertia effect involving the mean curvature of the de-
formed middle surface, referred to as rotational inertia, and the only influence
of magneto-electro-thermo-elastic behavior of the material appears in the coeffi-
cients A = (Aypsr) of the (symmetric) moment tensor M(t) = (Mqyp(t)) =
—%AVVw(t), (VVw(t))ap = Oapw(t) (let us point out that the fourth-
order tensor A = (A,g,-) is symmetric and strongly elliptic). The transverse
displacement w of the plate is solution of the following evolution equation:

2 3
2epii — %pAﬂ) —divdivM = f +divm  inQ x (0,T), 1)

equipped with initial conditions
w(0) = wy, w(0) =w; inQ (2)

and with suitable boundary conditions, where p > 0 is the mass density of the
plate, supposed to be homogeneous. If one supposes, for the sake of simplic-
ity, that the three-dimensional body is subjected to time-dependent volume forces
(0,0, F(t)) and surface loads (G (t), G5 (t),0) on the upper and lower faces
Q x {+e}, then the source terms in the right-hand side of (1) have the follow-
ing expressions

+e

ft) = F(t)dzs, ma(t) = e(GH(t) —Go (1)), ae{l,2}. (3

—e

The term accounting for rotational inertia in (1) is —% pAw, and it derives
from the expression of the volume kinetic energy k(t) for Kirchhoff-Love plates
subjected to pure bending:

3

k(t) = ! <Zeplb2 + 26p|Vd}|2) :
2 3

The reason for the word rotational is that the quantity | Vw| gives a measure of the

rotation of the material fibers orthogonal to the middle surface of the plate, which

remain straight and perpendicular to this surface after deformation in Kirchhoft-

Love kinematics.
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The influence of rotational inertia on the lateral vibrations of linearly elastic bars
was considered by Lord Rayleigh [20], sect. 186; the extension of this analysis to
the flexural motion of isotropic elastic plates was carried out for the first time in
1951 in a seminal paper by R. D. Mindlin [16] where also the effect of transverse
shear deformation is taken into account. Later on, an evolution model for plates
with rotational inertia was deduced by A. Raoult [18] using the asymptotic expan-
sion method. The influence of such effects has also been considered in the case
of flexural motion of large amplitude. Analogously to the case of beams, where it
can be worth to account for rotational inertia of the cross section in case the slen-
derness of the beam (i.e., the ratio of the cross section diameter to the length of the
beam) is lower than one, but not very close to zero, in our case rotational inertia of
the material fibers orthogonal to the middle surface may be important if the plate
thinness (i.e., the ratio of the thickness to the diameter of the plate) is lower than
one, but not very close to zero. In the following, to point out the influence of the
thickness parameter, we carry out our analysis on equation (1) divided by 2e.

Our goal, after providing a result of well-posedness for the problem, is to test
a numerical method involving C'! elements for what concerns space discretization
and Newmark’s midpoint method concerning time discretization. The presence
of the rotational inertia requires an appropriate choice of the functional spaces,
presented in sect. 1, where we sketch the proof of the well-posedness using the
Faedo-Galerkin method. In sect. 2 we perform, in the appropriate Sobolev spaces,
the error analysis of a finite element spatial discretization and of a Newmark-type
discrete time approximation. Our choice allows the application of the methods
developed for linear second-order evolution equations. Based on a continuous-
time Galerkin method (see e.g. [2] or [11]) we can infer optimal error estimates,
and then couple with the error estimates for the time discretization of Newmark
type (see e.g. [19]). Note that a conforming space discretization for plates requires
C'! elements; we choose HCT elements (see e.g. [7]). This theoretical numerical
analysis is complemented with numerical tests performed with FreeFEM++.

Let us remark that the choice of C'! elements is not very common in practice, as
these elements are rather expensive. Mixed and hybrid plate elements were exten-
sively studied. Among the elements widely used in the engineering community we
can mention the DKT triangle [3]. For a general review of plate elements see for
example [5], [14] and references therein. We can also mention the more modern
hybrid high-order methods [8, 9]: they will be studied in a forthcoming paper.
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1 Existence and uniqueness

We start by rewriting (1) as

2 2
1

pib — = plsib — Zdivdiv AVVw = —(f + divm). “)
€

The weak formulation of the problem depends on boundary conditions. For this,
we first define the pivot space

H={ue H(Q):u=0o0nTy} (5)

and the bilinear form b: H x H — R given by
2
b(u,v) = J <puv + %qu . Vv) dQ, VYu,veH. (6)
Q

Notice that b(-,-) defines a scalar product in H whose associated norm | - | is
equivalent to the usual Sobolev norm.
Let V be a Hilbert-Sobolev space such that

(i) V< H*Q)nH,
(#4) the embedding V' < H is compact.

Thanks to (i), we can endow V with the Hessian L?-norm given by

1/2
Jv| = <J VVuv:VVu dQ> . (7
Q

Let us define the bilinear form a:V x V' — R by
2
a(u,v) = ZJ AVVy:VV0dQ, VYu,velV. (8)
Q

By the symmetry and ellipticity properties of A, there exist two positive constants
A~ and A7 such that, for all z € Q,

AU < AU:U < AT|UP, VU e Sym(2).

Hence, a(-, -) is symmetric and V-elliptic: a(v,v) > %A’ |v]? for any v € V. In
the numerical examples, we consider essentially the following situations:

2Te3p(?nu')—0—divM~n—0—aT(Mn-7') =-m-n onljx (0,7),

(BC)1:{Mn-n=0 onTy x (0,7),
w=0, dyw=0 onTy x (0,7,
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%p@nd}+divM~n+ﬁT(Mn-7)=—m-n onTy x (0,7),
(BC)2: < Mn-n=0 on 0Q x (0,7),

w=0 onTy x (0,7).
Boundary conditions (BC'); refer to a plate clamped on I'y; in this case we choose

V=Vi={ue H(Q):u=dyu=0onTy}. ©)

Boundary conditions (BC'), feature a plate simply supported on I'y, in which case
we choose

V=V={ueH*(Q):u=00nTy} = H*(Q) n H. (10)

In both cases, under the general hypothesis of anisotropic linearly elastic behavior,
the weak formulation of the problem has the following aspect:

For any fixed ¢t € (0,7, find w(t) € V such that

2 2
f (pzl')(t)v + %pV?l}(t) -V + egAVVw(t) :VV’U> dQ
Q

1
*269

(11)
(f(t)v —m(t) - Vo) dQ,

for all v € V, with initial conditions w(0) = wy, w(0) = wy,
where V =ViorV = V5.

Remark 1.1. Notice that, by taking volume and surface loads constant in space in
(3), we have f(t) = 2eF(t) and mq(t) = e(GF (t)—G, (t)), so that the right-hand
sides of (4) and of (11) are independent of the thickness.

In order to show that problem (11) is well-posed, we identify the time-dependent
linear form on H
1

Lt(’U) = %

J (f(t)v —m(t) - Vv)dQ,
Q

with the scalar product of an element F'(¢) € H (for 0 < ¢ < T) with v € H. This
can be accomplished via the following problem:
Find F(¢t) € H such that

(12)
b(F(t),v) = Ly(v), Yve H.

Provided f(t) € L*(Q) and m(t) € L*(Q) for 0 < t < T, problem (12)
is well-posed by the Lax-Milgram Lemma. As for problem (11), we assume
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f e L*0,T; L*(Q)) and m € L*(0,T;L*(Q)), so that ' € L*(0,T; H); the
formulation of the problem reads then:

Givenwy € V, w € H and F € L*(0,T; H), find a function w such that
we CU[0,T);V) n CY([0,T); H) and, for all v € V,

5 (13)
%b(w(t}, v) + a(w(t),v) = b(F(t),v),
w(0) = wy, %(0) = wr.

Theorem 1.2. Let T > 0 be fixed, wo € V, wy € H and F € Lz(O,T; H).

(i) There exists a unique function w € C°([0,T]; V) n CL([0,T); H) satisfying
(13).

(11) Forallt € [0,T)], the function w satisfies the following energy equation:

(1)} + aw(t), w(t)) = fwif} + a(w(0), w(0)) + zfo b(F(s), t(s)) ds.

(#91) There exists a constant ¢ = ¢(Q, A) such that

lwlcogo, vyt Twler o m) < \/50(97 A) (Hon +|wi o+ ||F||L2(0,T;H))-

For a proof of statements (i) and (iii) of Theorem 1.2, of which we present
hereinafter some essential parts, see e.g. [1] and [19] (see also [10], for a general
treatment of evolution equations); the proof of statement (ii) can be found in [15,
Chap. 3, Sect. 8] where a very general situation is considered. The uniqueness of
the solution is proven in a standard way. With the choice (9) or (10) of the space
V', and (5) for the space H, endowed with scalar products (8) and (6) respectively,
the Faedo-Galerkin approximation method can be used. The compactness of the
embedding V' < H implies that there exists an increasing sequence of eigenvalues
0 <A <X <...< )\ <...and a Hilbert basis {g;}, orthonormal in H and
orthogonal in V, of associated eigenvectors verifying

YoeV, a(gi,v) = \ib(gi,v)

(see e.g. [?]). As for existence, the subspace V;, of V generated by the first m
eigenvectors gi, . . ., g, is introduced; let wyy, : t € [0, T] — wy,(t) € V,,, be solu-
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tion to the following (well-posed) second-order system of differential equations:

2
—b(wp(t),v) + alwp(t),v) = b(F(t),v), (14)

dw,,

Wi (0) = wom = Y, b(wo, g:) i, vy

i=1

(0) = wim = Y blwi,gi)gi-  (15)
i=1

One can show that {w,, },en is a Cauchy sequence in spaces C([0,T]; V') and
C'([0,T]; H) and thus it converges to a function w in such spaces. Finally, by a
density argument, it is proven that w is solution to (13).

2 Numerical analysis

2.1 Semi-discrete problem

Let V;, < V denote a subspace of V' of dimension I = I(h) and consider the
following semi-discrete problem: given wq € Vy, and wyp € Vy, find the solu-
tion wy, : t € [0, T] — wp(t) € V}, fo the following system of ordinary differential
equations:

d2
Yoy, € Vi, @b(wh(t);vh) + a(wy(t),vn) = b(F(t),vp), 16
dw
wp(0) = wo p, Tt}l(o) = Wy p-

We now introduce a basis {¢;}1<i<s of V}, and denote the time-dependent com-
ponents of wy, in this basis by &;(¢), 7 = 1,...,I. Analogously, we denote the
components in the same basis of wy j, and w; j, respectively by & ; and &; ;. Fi-
nally, we set x;(t) = b(F'(t), ;). Then (16) reads

{Mhé(t) + K& () = xn(1), (17)

£(0) =&, &(0)=¢&,

with self-explanatory notation. Matrices M, and K}, are respectively the mass
matrix and the stiffness matrix. Their coefficients are

(Mp)ij = blpi,pj) and  (KCp)ij = a(pi p;), 1<i,j<I. (18)
In the following, we drop the index ~ when there is no ambiguity.

Remark 2.1. The choice of the scalar product (6) in H ensures that M is positive
definite.
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Problem (17) is the semi-discrete counterpart of (13). Under certain in-time regu-
larity hypotheses on w and adapting the arguments of [2], [11], it is possible to give
an estimate of the error wy, (t) — w(t). For this, we introduce the elliptic projection
operator I, a linear and continuous operator mapping v € V onto IT,u € V},
defined by

Vop € Vi,  a(llpu — u,vp) = 0.

We have the following results.

Theorem 2.2. Let T' > 0 be fixed and assume that the solution w of (13) verifies
w e C*([0,T); V). Then there exists a constant C' = C(A) independent of h such
that, for any t € [0, T,

dwy, dw

[wn(t) = w(t)| +| =3~ () = 5 (@)

b

<

D | =

C(A) (IIwo,h — Mywol| + |wip — Mpwifp + (T = Tp)w(t)]

¢
+J ds).
0 b

Theorem 2.3. Under the assumptions of Theorem 2.2 let the following approxima-
tion hypotheses be satisfied:

d2w

: (-1 S (s)

+lo-m S

b

YoeV, i inf — =0 19
veV, lim: inf Jlv—ui] =0, (19)
lim [, — woll =0, 20)
lim \wlyh - w1|b = 0; (21)
h—0
then
dwy, dw
te |0, T li t) —w(t — () — —( =0.
el gim (o0 - wio)] + |50 - G0 )

This convergence result can actually be improved; under the hypotheses of Theo-
rem (1.2),

Jim wy, = w in C°([0,7]; V) and in C'([0,T]; H).
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2.2 Time discretization: Newmark’s midpoint method

A typical time discretization method widely used for differential systems of the
form (17) is the Newmark method (see, e.g., [12]). In particular, we will use a
midpoint approximation.

Let N € N; we introduce a time-step At =
interval [0, 7] defined by nodes t,, = nAt, 0 <
an approximation (5”, 5”) of the pair (E (tn), E(tn)> The discretization of (17)
based on Newmark’s midpoint method can be rewritten as

Atz n+— n n Atz n+l
M+ =8 M£+ M£ + = x"2, 0<n< N1,

and a uniform mesh of the

T
N
n < N. We want to compute

4

€=k, €£=¢
(22)

with €n+3 = 3 (€M +¢m) and X" = 3 (X(tns1) + x(t)). Upon solving
(22) for £™3, the update rules are
. 4 1 .
n+l _ © n+ts _ ¢gn) _ ¢n
gt = = (e —gn) - €,
£n+l _ 2£n+% o €TL

In this situation, Raviart and Thomas [19] have proved the following error esti-
mate.

Theorem 2.4. Let T' > 0 be fixed. Then the solution {w}' € V},,0 < n < N} given
by (22) verifies the following estimates:

() ifwe C2([0,T];V) n C3([0,T]; H),

[wp —w(tn)|p < C(wo,h — pwolp + |wip — Mpwi |+
d2w

ela=mute)l+ [ (jo-nn o)

where C = C(T) is independent of h, At and w;
(i) ifwe C*([0,T]; V) n C*([0,T]; H),

d3

A
+tdt3()

J)

lwp —w(tn)|p < C<|w0,h —Mpwoly + |wip, — Mpw |p+

+m—mmmm+f(

where C' = C(T) is independent of h, At and w.

d2w

W(S) + Atz

(I —1ITy)

J)

dt4()
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)
A
|
(@)

(b)

Figure 1. The HCT element (a) and the HCT element in detail (b).

2.3 Space discretization: HCT elements

The solution of (13) belongs to C°([0, T]; V') n C'([0, T]; H), thus we are led to
select finite elements of class C'; in particular, we will use HCT elements.

Let 7, denote a regular mesh in the sense of Ciarlet [7, 19] of the domain Q,
K e Tp, the typical element of 7;, and X}, a finite element space. Moreover, let
P = {vp : vp € Xp}. We recall the following result of [7].

Theorem 2.5. Assume that the inclusions Py < H?(K) for all K € T, and
X, < CY(Q) hold. Then the following inclusions hold:

Xy < HY(Q),
Xoh ={vp € Xp v =0o0n Ty} c Vs,
Xooh = {'Uh e Xp vy = 8nvh =0 on ro} V.

Remark 2.6. The choices V}, = X, for (BC); and V}, = X, for (BC'), ensure
hypotheses (19) to (21) of Theorem 2.3 to be satisfied [7].

Finite elements of class C'! are rather complicated and time-consuming, and are
not used too often in practical applications. We choose to start our experiments
with such elements because the theory described is valid for conforming approx-
imations. In this context, the HCT is one of the simplest C' elements (Fig. 1(a)).
The set of degrees of freedom (twelve in total) is given by the values of a func-
tion, as well as of its partial derivatives, at the three vertices and by the values of
its normal derivatives at the midpoints of the sides. From an internal viewpoint,
the HCT element is a composite element: a typical triangle K € 7}, is split into
three sub-triangles K; (: = 1,2,3), the internal node usually corresponding to
the barycenter of K (Fig. 1(b)). A polynomial of degree three is defined on each
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sub-triangle, so that the space Py is given by
Px = {pe C'(K):pk, € P3(K;), 1 <i<3}.

The condition p € C'!'(K) is realized by requiring the continuity of the three poly-
nomial expansions and of their gradients at the barycenter (marked by a black
square in Fig. 1(b)), and the continuity of their normal derivatives at the midpoints
of the internal sides. Thus, the HCT element is a C'! element as a whole, in the
sense that a function and its first derivatives are continuous across the edges of any
two adjacent elements of 7y,

Let us now provisionally focus on the static counterpart of (13), namely,

VoeV, a(w,v) = L(v), (23)

where we have neglected time dependence. Notice that in this case the pivot space
H is L*(Q). The discrete version of (23) reads

I
Z a(pi, 0;)& = L(pi), 1<i<I.
j=1

The following theorem [7] yields an estimate of the error between wy, and w when
HCT elements are employed in space discretization for (23).

Theorem 2.7. If the exact solution w € V of (23) is also in the space H*(Q), then
there exists a constant C' > 0 independent of h such that

lw — wp| g2 () < Chz\w|H4(Q)~ (24)

Remark 2.8 (Implementation issues). In finite element methods, a quadrature
scheme is needed to compute the coefficients a(y;, p;) and L(y;), thereby re-
sulting in an approximated bilinear form ap(-,-) and in an approximated linear
form Lp(-). Generally, integration over a mesh element is performed using a
quadrature scheme for which all nodes are situated at the interior of the element.
However, in the HCT case, a mesh element features internal interfaces between
any two sub-triangles; at these interfaces, the continuity of second partial deriva-
tives is not guaranteed. Hence, one should use a quadrature scheme that avoids
nodes on any such interface. A solution is to integrate on each sub-triangle
and then sum up the three contributions. Moreover, in order to apply the first
Strang lemma [?, 7], we need that the bilinear form a; be uniformly V},-elliptic,
ie. Ja > 0: Yo, € Vi, an(vn,vn) = allvy|?. In our situation, if the space
Py contains polynomials of degree at most k, a sufficient condition for ay, to sat-
isfy this property is that the quadrature scheme be exact for polynomials of degree
2k — 4 at least. This means that on each K; < K, a quadrature formula exact at
least for polynomials of degree two has to be used.
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3 Numerical simulations

For what concerns the numerical treatment of problem (1)-(2), we will restrict our
attention to an isotropic behavior; hence, the constitutive equation yielding M is

M = —D((1 —v)VVu+vAul), with po 2F (25)
= v u+vAul), wi —3(1_V2)

the flexural rigidity of the plate, F and v being respectively Young’s modulus and
Poisson’s ratio of the material.

We perform numerical tests using the software package FreeFEM++3.42 (see
[13]), in which HCT elements have been implemented along with an adequate
quadrature formula for their use. We will consider two situations:

(1) Q={(z,y) e R?: 2?2 +y* < R*}, Ty = 0Q and (BO);,

i.e. a circular plate of radius R clamped all over the lateral surface;
(2) Q=(0,a) x (0,b) witha,b > 0, Ty = 6Q and (BC),,

i.e. a rectangular plate simply supported all over the lateral surface.

In both situations we assume m = 0, and in order to get coherent results we fix
once and for all the following set of data:

R=5cm, a=6cm, b=8cm, e=1mm
p = 5600 kg/m> E =136 GPa, v = 0.3, (26)
(i.e. D =99.63 N-m).

3.1 Statics

In each of the following test cases, we consider nested meshes in order to determine
the behavior of the relative error in H?(Q)-norm with respect to the meshsize h;
of course, mesh refinement is uniform.

3.1.1 Boundary conditions (BC');

The problem formulation reads in this case

DAAw = fy in Q,
27)
w=0, 0w =0 onodQ,
with fj a constant; the closed-form solution of (27) is given in this case by
_Joo o a2
w(z,y) (R" — (2" + 7))~ (28)

64D
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Table 1. Variation of the H?-norm of the relative error with the number of finite
elements for w given by (28), along with the corresponding number of degrees of
freedom.

Relative error in H*-norm 0.75% | 0.2% | 0.06% | 0.01%
Number of finite elements 111 444 1776 7104
Number of degrees of freedom 386 1435 5531 21715

Table 1 shows that the variation of the H?-norm of the error with respect to the
number of finite elements (and thus to the meshsize) is in agreement with error
estimate (24), i.e. quadratic. A different simulation where the exact solution is
non-polynomial, namely, w(z,y) = @{P—OD(R2 — (2% + y?))?sin(ax), gives similar
results.

3.1.2 Boundary conditions (BC);
The problem formulation is

DANAw = fysin (%x) sin (%y) in Q,

w=0 Mn-n=0 on 0Q,

(29)

The closed-form solution is given by

LT LT 1 1\ 72
w(z,y) = Wysin <Ex> sin (gy) , Wy = W{:—OD (a2 + b2> . (30)

The variation of the relative error is shown in Table 2, and once more the conver-
gence is quadratic.

Table 2. Variation of the relative error in H?-norm with the number of finite elements
for w given by (30), along with the corresponding number of degrees of freedom.

Relative error in H>-norm 0.4% | 0.1% | 0.03% | 0.009%
Number of finite elements 212 848 3392 13568
Number of degrees of freedom | 719 2707 | 10499 | 41347

3.1.3 L-shaped clamped plate

To further test the effectiveness of HCT elements, we also performed a numerical
simulation in the case of an L-shaped clamped plate, i.e. with boundary conditions
(BC);. Table 3 shows the variation of the relative error in H2-norm. Since the
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b=3cm

a=10cm

Figure 2. L-shaped domain.

closed-form solution is not known in this case, comparison has been made with a
numerical solution obtained on a fine adapted mesh, consisting of 137232 elements
(meshsize 0.08 mm). Computations have been carried out, again, with nested
meshes, taking into account the singularity at the inside corner with a suitably-
refined initial mesh. The corvergence rate turns out to be slightly slower than
quadratic (1.74). Since the solution has very large variations around the inside
corner, adaptive mesh refinement is necessary; however, such numerical aspects
are beyond the scope of this paper.

Table 3. Variation of the H%-norm of the relative error with the number of finite
elements for w given by (28), along with the corresponding number of degrees of
freedom.

Relative error in H*-norm 243% | 7.3% | 2.2% 0.8%
Number of finite elements 258 1032 4128 16512
Number of degrees of freedom 869 3283 | 12755 | 50275

3.2 Dynamics

In order to test the accuracy of the Newmark midpoint method combined with
HCT elements, we consider the time evolution of the transverse displacement ¢ —
wp (o, Yos t), where (xo, o) is the center of the plate; we consider nested meshes
in the two cases (BC'); and (BC'),. The data set is given in (26). We consider
an exact solution of the form w(x,y;t) = k(z, y) sin(8t), where /3 is a constant!,

! We obtained similar results for time dependencies of the form ¢* and arctan(3t).
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and we take into account the evolution of the relative error

wh(m()?yo;t) - ’U}(I(), yO’t) ift>0 'LU(J:() Y0; t) + 0
en(t) = w(wo, yos ) T 6
0 if t =0.

Since convergence occurs only for 0 < ¢ < T where T is fixed, we precise in each
example the value of 7.

3.2.1 Influence of space discretization

In this section we fix once and for all the time-step to Az = 0.01 s, and we point
out the influence of space discretization.

Boundary conditions (BC),

The function

fo
w(z,y:t) = 64D

with fj a constant, is solution to the problem

(R?> — (2% + yz))2 sin(t), (32)

3
Zeptb—z%pAi[)—i-DAAw:f inQ x (0,7),
wolwy) = 0, wi(z,y) = 2L (R — (2 + ) inQ
b b) b 64D )
w=0, dyw=0 on 0Q,
with
2
Flayt) = PP (3R2 (02 1) 4 82 (R - 2(a” + 97) ) sin(40)
96D
+ fosin(5t).

The evolution of the error given by (31) is shown in Fig. 3(a), and it reflects the
expected behavior: the error evolution is attenuated upon refining the mesh.
Boundary conditions (BC),

The function
w(z, y;t) = Wosin <gm) sin (%y) sin(t), (33)
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with W as in (30), is solution to the problem

2 3
Depin — %p&i[) +DAAw = f inQ x (0,7),

wo(z,y) = 0, wy(z,y) = FWysin (gx) sin (%y) in Q,

w=0, Mn-n=0 on 0Q,
with
flz,yst) =
26%a*b* foe (b*e*n? + a* (3> + €?n?)) . /m 2N
= — 37T4D(CL2 + b2)2 P Sin (EJJ) sin (Ey) Sln(ﬁt)+

+ fosin (gaz) sin (%y) sin(f3t).

The evolution of the relative error given by (31) is shown in Fig.3(b). Let us
remark that the behavior of the error corresponding to the finest mesh (represented
by a red line) is in this case almost imperceptible, inasmuch as it is very close to
zero. Also, notice that the convergence is in this case remarkably faster than in
Fig. 3(a); this can be related to the fact that no approximation error concerning
the domain geometry is committed, unlike the case of (BC);, where the domain
under consideration is a circle.

3.2.2 Influence of time discretization

In this section we consider two different values of the time-step At (namely, 0.01 s
and 0.05 s) in order to point out the influence of this parameter.

In the case of (BC),, when the source term vanishes (f = 0), the closed-
form solution to the dynamic problem can be obtained by separation of variables.
Indeed, one has the Fourier development

. . /mr . o/nm
w(z,y;t) = Z (g}nn cos(wmnt) + gf,m s1n(wmnt)) sin (Tx) sin <7y> ,
m,neN

where

’ <m2 N n2> D
Wmn = T — 7 s
a b 2ep + %er% (’Z—; + %;)

and coefficients g} . and g2, are determined by initial conditions. We consider
then the following situation:

wo(z,y) =0, and w(x,y)= asin (gx) sin (%y) ,
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Relative error
Relative error

002 - g - }‘ b
|

2 .
Time (s) Time (s)

(a) b)

Figure 3. Evolution of the relative error ¢ — &5(t) with (zo,y0) = (0,0) for
(BC); (a) (continuous line: 27 elements; dashed line: 108 elements; red line: 432
elements), and with (zo, yo) = (a/2,b/2) for (BC), (b) (continuous line: 12 ele-
ments; dashed line: 48 elements; red line: 192 elements). In both cases, 5 = 1 s~
and 7' = 3.5 s. In both cases, all three evolutions become slightly irregular (more
remarkably in case (b), with the largest number of elements) when ¢ is close to 7;
indeed, g(7) = 0for B =151

in which case the exact solution is

a (TN L (TN
w(z,y;t) = o sin (Ex) sin (gy) sin(wyt).

Given that the exact solution is (27 /w1 )-periodic in time, in order to test our nu-
merical method we consider a reasonable value of wy; say, wi; = 10s~!. The
evolution of the relative error, given by (31), is shown in Fig. 4(a) for a time-step
At = 0.05 s and in Fig.4(b) for a time-step At = 0.01 s. For At = 0.05 s, the
obtained behavior is unexpected: mesh refinement results in an amplification of
the relative error ; decreasing the time-step to At = 0.01 s yields the expected
behavior. Indeed, note that the period 7 corresponding to wy; = 105~ is approx-
imately equal to 0.63 s, so that the ratio At/7 is about 0.08 for At = 0.05 s and
about 0.01 for At = 0.01 s. The influence of such ratio is well-known in the case
of Newmark’s midpoint method (see, e.g., [12]).
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(a)

Figure 4. Evolution of the relative error t — &5, (t) , with (zo,%0) = (a/2,b/2),
for a vanishing initial displacement and a nonzero initial velocity, for a time-step
At = 0.05s (a) and a time-step At = 0.01 s (b). Continuous line: 28 elements;
dashed line: 112 elements; red line: 448 elements. In both cases, « = 1 ¢m/s and
T =0.7s.

Concluding remarks

We have pointed out the importance of our choice of spaces V and H, required for
the treatment of the rotational inertia term, not only in the proof of the problem’s
well-posedness, but also in error estimates concerning our numerical method. Our
simulations, performed using FreeFEM++ 3.42 show that the presence of the ro-
tational inertia term does not affect the efficiency of the Newmark time discretiza-
tion method combined with conforming finite elements such as HCT elements.
We have tested the implementation of such elements in three cases: clamped cir-
cular plate, simply supported rectangular plate and L-shaped clamped plate. In all
these cases, our numerical experiments validate the convergence rate of the error
predicted by the theory. As is well-known, HCT elements are computationally
expensive; it would then be of interest to use nonconforming space discretization
methods (mixed or hybrid) [4,17], such as HHO methods [8,9]. The application of
such methods to plate problems seems particularly interesting and will be carried
out in a forthcoming work.
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