Skip to Main content Skip to Navigation
Journal articles

Goal Probability Analysis in MDP Probabilistic Planning: Exploring and Enhancing the State of the Art

Marcel Steinmetz 1 Joerg Hoffmann 1 Olivier Buffet 2 
2 LARSEN - Lifelong Autonomy and interaction skills for Robots in a Sensing ENvironment
Inria Nancy - Grand Est, LORIA - AIS - Department of Complex Systems, Artificial Intelligence & Robotics
Abstract : Unavoidable dead-ends are common in many probabilistic planning problems, e.g. when actions may fail or when operating under resource constraints. An important objective in such settings is MaxProb, determining the maximal probability with which the goal can be reached, and a policy achieving that probability. Yet algorithms for MaxProb probabilistic planning are severely under-explored, to the extent that there is scant evidence of what the empirical state of the art actually is. We close this gap with a comprehensive empirical analysis. We design and explore a large space of heuristic search algorithms, systematizing known algorithms and contributing several new algorithm variants. We consider MaxProb, as well as weaker objectives that we baptize AtLeastProb (requiring to achieve a given goal probabilty threshold) and ApproxProb (requiring to compute the maximum goal probability up to a given accuracy). We explore both the general case where there may be 0-reward cycles, and the practically relevant special case of acyclic planning, such as planning with a limited action-cost budget. We design suitable termination criteria, search algorithm variants, dead-end pruning methods using classical planning heuristics, and node selection strategies. We design a benchmark suite comprising more than 1000 instances adapted from the IPPC, resource-constrained planning, and simulated penetration testing. Our evaluation clarifies the state of the art, characterizes the behavior of a wide range of heuristic search algorithms, and demonstrates significant benefits of our new algorithm variants.
Document type :
Journal articles
Complete list of metadata

Cited literature [72 references]  Display  Hide  Download
Contributor : Olivier Buffet Connect in order to contact the contributor
Submitted on : Friday, December 9, 2016 - 11:44:53 AM
Last modification on : Friday, July 8, 2022 - 10:09:58 AM
Long-term archiving on: : Thursday, March 23, 2017 - 9:45:20 AM


Files produced by the author(s)




Marcel Steinmetz, Joerg Hoffmann, Olivier Buffet. Goal Probability Analysis in MDP Probabilistic Planning: Exploring and Enhancing the State of the Art. Journal of Artificial Intelligence Research, Association for the Advancement of Artificial Intelligence, 2016, 57, pp.229 - 271. ⟨10.1613/jair.5153⟩. ⟨hal-01413047⟩



Record views


Files downloads