N

N

Generic Programming in OCaml
Florent Balestrieri, Michel Mauny

» To cite this version:

Florent Balestrieri, Michel Mauny. Generic Programming in OCaml. OCaml 2016 - The OCaml Users
and Developers Workshop, Sep 2016, Nara, Japan. hal-01413061

HAL Id: hal-01413061
https://inria.hal.science/hal-01413061
Submitted on 9 Dec 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/hal-01413061
https://hal.archives-ouvertes.fr

Generic Programming in OCaml*

Florent Balestrieri Michel Mauny

U2IS, ENSTA-ParisTech, Université Paris-Saclay,
828 boulevard des Maréchauzx, 91762 Palaiseau Cedex

We present a library for generic programming in OCaml, adapting some
techniques borrowed from other functional languages. The library makes
use of three recent additions to OCaml: generalised abstract datatypes are
essential to reflect types, extensible variants allow this reflection to be open
for new additions, and extension points (PPX) provide syntactic sugar and
generate boiler plate code that simplify the use of the library. The building
blocks of the library can be used to support many approaches to generic
programming through the concept of view. We present an application of the
library to provide type-safe alternatives to OCaml’s unsafe deserialization
and unsafe type-cast.

Why Generic Programming?

Although the strong type system of OCaml is an asset when considering the safety
properties that it ensures, it can also be perceived as a frustrating barrier that prevents
us to generalise over some programming patterns, leading to a lot of boilerplate code and
duplicated logic.

For instance, there is no convenient way to define a generic equality in OCaml. This
operation being so common, a built-in generic equality operator is shipped as standard
with OCaml. A fixed set of other generic operations are available in OCaml, yet they
raise some issues:

e They break type abstraction;
e They sometimes even break type safety;
e We cannot easily define additional generic operations.

Our library

To address the above issues, we designed a library for generic programming in OCaml.
Unlike the built-in generic operations, our library is strongly typed and therefore pre-
serves type abstraction and type safety.

*This work was partially supported by the ANRT through the SecurOCaml project.
fSubmitted for Presentation at OCaml 2016



Type Reflection. Like parametric polymorphic functions, generic functions work on all
types. Unlike parametric polymorphic functions, generic functions may inspect the values
that they process. For this to be possible, generic functions are structurally defined on
the types. In OCaml, this is now possible using generalised abstract datatypes (GADTS).
We define a type a ty whose values reflect the type parameter «a:

type aty =
| Int @ int ty
| String : string ty
| Pair : aty X Bty — (a,3) ty
| List : a ty — « list ty

The value reflecting the type (int, string) list is List (Pair (Int, String)) and it has type
(int, string) list ty. We say the values of type a ty are type codes.

Generic functions are polymorphic functions parameterised by a type code, we call
them type-indexed functions. For instance the deseralization function and generic equal-
ity may be typed as follows:

val deserialize : « ty — string — «
val equal : vty =& o — a — bool

As new types may be added by the user, type reflection needs to be extensible, and so
does type-indexed functions. Whereas extensible types have been available since OCaml
version 4.02, there is still no language support for extensible functions. We therefore
provide a library implementation of extensible functions using PPX for syntax sugar.

Generic Views. Whereas type codes are the value level reflection of type terms, generic
views reflect the structure of types. For instance, a common generic view is the sum
of product view which can describe all variant types. Generic functions will usually be
defined by structural recursion over a generic view.

Syntactic Support. The library requires specific work when new types are introduced,
if we wish that the generic operations work on them. Thanks to extension points (PPX),
we may free the programmer from this systematic task. We also provide cleaner syntax
for writing extensible type-indexed functions. Finally, PPX may also be used to fill in
automatically the type code arguments of generic functions.

Concrete applications. The library has been applied to deserialization, as part of the
project SecurOCaml. The generic function is particular in that it works with the under-
lying memory representation of OCaml values, just like the standard (de-)serialization
functions from the module Marshal. However, unlike them, the algorithm is recursively
defined on the type representation, which not only provides type safety, but also correct
support of abstract datatype.

Availability The library is licensed as open source software. A pre-release is expected
at the end of July 2016, at https://github.com/0CamlPro/Secur0Caml.


https://github.com/OCamlPro/SecurOCaml

