A Cognitive-Based Model of Flashbacks for Computational Narratives

Abstract : The flashback is a well-known storytelling device used to invoke surprise, suspense, or fill in missing details in a story. Film literature provides a deeper and more complex grounding of flashbacks by explaining their role to stimulate the viewer's memory in order to guide and change viewer comprehension. Yet, in adapting flashback mechanisms to AI sto-rytelling systems, existing approaches have not fully modelled the roles of a flashback event on the viewer's comprehension and memory. To expand the scope of AI generated stories, we propose a formal definition of flashbacks based on the identification of four different impacts on the viewer's beliefs. We then establish a cognitive model that can predict how viewers would perceive a flashback event. We finally design a user-evaluation to demonstrate that our model correctly predicts the effects of different flashbacks. This opens great opportunities for creating compelling and temporally complex interactive narratives grounded on cognitive models.
Type de document :
Communication dans un congrès
Proceedings of Artificial Intelligence and Interactive Digital Entertainment 2016, Oct 2016, San Francisco, United States
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01413401
Contributeur : Marc Christie <>
Soumis le : lundi 12 décembre 2016 - 11:34:31
Dernière modification le : mardi 16 janvier 2018 - 15:54:19

Identifiants

  • HAL Id : hal-01413401, version 1

Citation

Hui-Yin Wu, Michael Young, Marc Christie. A Cognitive-Based Model of Flashbacks for Computational Narratives. Proceedings of Artificial Intelligence and Interactive Digital Entertainment 2016, Oct 2016, San Francisco, United States. 〈hal-01413401〉

Partager

Métriques

Consultations de la notice

266