Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions

Vincent Drouard 1 Radu Horaud 1 Antoine Deleforge 2, 1 Sileye Ba 1 Georgios Evangelidis 1
1 PERCEPTION - Interpretation and Modelling of Images and Videos
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
2 PANAMA - Parcimonie et Nouveaux Algorithmes pour le Signal et la Modélisation Audio
Inria Rennes – Bretagne Atlantique , IRISA_D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : Head-pose estimation has many applications, such as social-event analysis, human-robot and human-computer interaction, driving assistance, and so forth. Head-pose estimation is challenging because it must cope with changing illumination conditions, face orientation and appearance variabilities, partial occlusions of facial landmarks, as well as bounding-box-to-face alignment problems. We propose a mixture of linear regression method that learns how to map high-dimensional feature vectors (extracted from bounding-boxes of faces) onto both head-pose parameters and bounding-box shifts, such that at runtime they are simultaneously predicted. We describe in detail the mapping method that combines the merits of manifold learning and of mixture of linear regression. We validate our method with three publicly available datasets and we thoroughly benchmark four variants of the proposed algorithm with several state-of-the-art head-pose estimation methods.
Type de document :
Article dans une revue
IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2017, 26 (3), pp.1428 - 1440. 〈10.1109/TIP.2017.2654165〉
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/hal-01413406
Contributeur : Team Perception <>
Soumis le : mercredi 1 février 2017 - 16:07:00
Dernière modification le : jeudi 15 novembre 2018 - 11:59:00

Fichiers

main_jrnl_review2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Vincent Drouard, Radu Horaud, Antoine Deleforge, Sileye Ba, Georgios Evangelidis. Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions. IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2017, 26 (3), pp.1428 - 1440. 〈10.1109/TIP.2017.2654165〉. 〈hal-01413406〉

Partager

Métriques

Consultations de la notice

1352

Téléchargements de fichiers

374