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Graph-based Registration, Change Detection and
Classi cation in Very High Resolution
Multitemporal Remote Sensing Data

Maria Vakalopoulou, Konstantinos Karantzal@enior Member, IEEENikos Komodakis,
Nikos ParagiosFellow Member, IEEE

Abstract— In this paper we propose a modular, scalable,
metric-free, single-shot change detection/registration method.
The developed framework exploits the relation between the
registration and change detection problems, while under a
fruitful synergy the coupling energy term constrains adequately
both tasks. In particular, through a decomposed interconnected
graphical model the registration similarity constraints are relaxed
in the presence of change detection. Moreover, the deformation
space is discretized, while efcient linear programming and
duality principles are used to optimize a joint solution space
where local consistency is imposed on the deformation and the
detection space as well. The proposed formulation is able to
operate in a fully unsupervised manner addressing binary change
detection problems i.e., changeor no-change with respect to 1 )
different similarity metrics. Furthermore, the framework has 1 Registration & Change Detection Framework |
been formulated to address automatically the detection ofrom-to ! Eregich = Ecpl + Ech + Ereg :
change trajectories under a supervised setting. Promising results e ‘
on large scale experiments demonstrate the extreme potentials of
our method.

Index Terms—Markov random elds, deformable, registration,
change trajectories, multisensor, land cover, buildings

I. INTRODUCTION

Detecting and modeling spatio-temporal changes over the
structured environment is critical in various engineering, civil-
ian and military applications. One can cite for example, urban
and rural planning, mapping and updating geographic informa-
tion systems, surveillance, transportation, virtual tourism and )
location based services. Despite important research efforts fig: 1* The developed framework addresses simultaneous the
[17], [19], [23], [25], [26], [30], [36] and recent advances [1],reg|strat|on and change detection tasks.

[3], [12] accurate detection and modeling of geometric/man-

made changes is, still, challenging. This is particularly the case ) . .

when one considers addressing the problem in the context of\ddressing such challenges is becoming currently a ne-
(i) large-scale (e.g., updating geospatial databases, Micro<gissity since earth observation missions now provide cost-

Virtual Earth, Google Earth), (ii) detailed and spatially acciEffective data for large-scale urban and peri-urban monitoring.

rate mapping (based on very high resolution data) and (i%uch data _con3|sts of ve_ry-hlgh resolution (e.g., less than
m) multispectral satellite images and can cover several

sparse multi-temporal and/or massive streams of current eatt? kil ywith o single i 4 dail
observation data. square |omgt§ars (e.g., 50KMwith a single image and daily
revisit capabilities. However, the development of accurate and
M. Vakalopoulou and K. Karantzalos are with the Remote Sensing Lab

ratory, National Technical University of Athens, Zographou campus, 1578%w’-0mated registration methods for very Iarge, mUItISpeCtral’

Athens, Greece (e-mailnariavak@central.ntua.gkarank@central.ntua.gr high resolution satellite data is not a trivial task [18], [25],
N. Komodakis is with the LIGM LaboratoryEcole des Ponts ParisTech, [31].

Marne-la-Vale 77455, France (e-maflikos komodakis@enpg fr In the past decade, a number of image registration methods
N. Paragios is with the Laboratoire de Mathatiques Appligées aux

Sysemes,Ecole Centrale Paris, 92290 &enay-Malabry Cedex, France andh"’W_e been propoged and summarized in V&I‘IOEJS S'urveys on the
also with the GALEN Team, INRIA, 91893 Orsay Cedex, France (e-maitopic [5], [38] or in related areas [29]. The objective of these

nikos.paragios@ecpJr o _methods is to estimate an appropriate transformation model
Color versions of one or more of the gures in this paper are avallab? . h her. Th L. . . hod
online at http:/fieeexplore.ieee.org. rom one image to the other. The existing registration methods

Digital Object Identi er can be classi ed into two main categories: feature-based and
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area-based. Feature-based methods employ region descrigterformance once modern parallel programming architectures
[32] or more recently deep neural networks [37] that are robuste considered.
to illumination and viewpoint changes. Descriptors similarity
criteria are used to provide potential sparse correspondences II. METHODOLOGY
that are used as basis for the estimation of the transformati NVIRE formulation
parameters. Deformable methods [11], [29], used in computer _ )
vision, medical imaging and remote sensing can be consideredVe have designed and built an MRF model over two
as area based methods. However, the majority of the autom4lifferent graphs of the same topology, number of nodes and
image registration algorithms assume that the two imag@nnectivity system (Fig. 2). The rst graph corresponds to
depict objects that are visible in both spaces. Such hypothé§ig registration term@eq) and the second one to the change
is violated in the presence of changes between two succes$lgéection term@e ). The assumption of local consistency on
acquisitions and is often addressed through change detecti®§. retained solution for each space is imposed by a smooth-
However, change detection from multitemporal earth of€SS term which each graph contains. Moreover, the interaction
servation data, still, remains a challenge. Kernels [2], [34}€tween the two graphs is performed by the similarity cost
Markov Random Fields [1], [8], [28] and neural networks [zz]yvhich connects the registration with the change detection
[24] have gained attention in the recent years. In the contd®MS.
of man-made object change detection [4], [21] for urban andEach graph is superimposed on the image [9] and therefore
peri-urban regions, several approaches have been propdd@y node of the graph acts and depends on a subset of
based on very high resolution optical and radar data [7], [26}X€ls in its vicinity (depending on the interpolation strategy).
[21], [24]. However, these change detection technigues requitdth such a manner every pixel can participate through a
accurately co-registered data in order to perform pixel-by-pixgrtain weight, related to its distance from the nodes, to
or region-by-region multi-temporal data fusion, correlation dhe graph. The dimensions of the graph are related to the
change analysis as largely spurious results of change detectifage dimensions forming a trade off between accuracy and
will be produced if images are misaligned. computational complexity. In particular, the computational
To this end, in this paper, we propose an one-shot re@omplexity is lower as graph's dimensions are smaller than the
istration/ change detection framework where the registratisiiregistered raw images. In such a setting the deformation of
of very high resolution data is optimally addressed throug?hpiXE| is de ned through an interpolation of the displacement
deformation grids and powerful discrete optimization [11Pf the proximal graph ”0d§3:
while the desired changes corresp(_)nd to regions for which T(X)= X + (ix  pii)dp )
correspondences between the unregistered multi-temporal data
cannot be established (Fig. 1). Moreover, we extend the
recently proposed change detection framework [33] by prihered, is the displacement vector of the control pomt
viding information about the type of detectédm-to change X is an image pixel and(:) is the projection function which
trajectories. connects with a weight propositional to the distance the pixels
In particular, our contribution refers to a scalable, modulafith the nodes of the grid and reverse. That way every pixel
metric-free, single-shot change detection/registration meth@@rticipates to each node depending to its distance from the
The framework exploits a decomposed interconnected grapiede. A typical example of a projection function would be
ical model formulation where in the presence of chang&bic B-splines which is the one employed here.
the iconic similarity constraints are relaxed. We employ a
discretized, grid-based deformation space. State-of-the-art lin-
ear programming and duality principles have been used to ) - -
optimize the joint solution space where local consistency is a4 — /1
imposed on the deformation and the detection space. The / /Il |/ /
unsupervised framework has been designed to handle and pro- / ' Viegen
cess large, very high resolution multispectral remote sensing /[~ ; ;
data, while was optimized towards man-made object change
detection in urban and peri-urban regions. Furthermore, we
have extended the formulation in order to detect automatically Vot Vel W Vad /. 7 Greg

from-to change trajectories based on a supervised manner. / /./ - /0/ /0/ ,

The developed method has been validated through large scale
experiments on several multi-temporal very high resolution /./ / /./ / / /

optical satellite datasets. € & &

The main contributions of the developed method &je
the novel, single and modular joint registration and chandg. 2: Each graph contains a smoothness term which imposes
detection framework(ii) the metric-free formulation which the necessary homogeneity within the graph. The interaction
allows numerous and change-speci ¢ implementatiofi§, between the two graphs is performed by the similarity cost
the classi cation of the different types of changés) the low which connects the registration with the change detection
computational complexity which would allow near real-timéerms.

p2G

el
£
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After the optimization, the same projection functié(:) The smoothness term penalizes neighboring nodes that have
will be used to project the optimal displacements)(to the different displacement labels, depending on the distance of the
image pixels. Once the similarity criterion has been de nedabeled displacements as in (3). The similarity cost depends
the next step consists of imposing certain continuity on thlen the presence of changes and will be subsequently de ned
deformation space which is discussed in the next subsecti@t.the following Section II.D.

The energy functiolE jeq;ch = Ecpi+ Ech+ Ereg introduces It is worth mentioning that we have designed the framework
connectivity between the two different graphs. The label fao work with any type of input image pairg.g.,raw, recti ed
each node belonging to the grapts isl, = [1%;1™®9]. The la- based on RPCs, recti ed based on a reference imetgs, It
bels for the registration alé®d 2, where =[ d';:::;d"] can address cases with large initial displacemeets. (raw
corresponds to all possible displacements. The labels for teta), address relief displacements or already recti ed data
change detectioff are different for the unsupervised and théased on rigid €.g., af ne) transformations. This is mainly
supervised approach. In particular, during the unsupervisadnatter of the number of multiresolution grid levels, image
approach the change detection labels [&r@ f 0; 1g where scales, initial grid sizeetc It should be also noted that the
1 indicates the presence afidhe absence of change. On themoothness term highly constrains the displacements of the
other hand, during the supervised approach the changes grid nodes and does not let any grid cross-overs during the
classi ed in different classes.é., from-tochange trajectories) optimization at ner scales or at regions with important relief

the absence of change and all the others indicate a specic

type of change€.g., vegetation-to-man-made, vegetation-to- .
soil, soil-to-man-madee.t.c). Finally, the label space can bec' The Change Detection Energy Term

summarized ag = I°¢ . The goal of the change detection term is to determine
the changed and unchanged image regions and at the same
B. The Registration Energy Term time thefrom-to change trajectories depending on the labels

For tackling the registration problem we employ a noan change. The energy formulation for _the c_hange detection
rigid framework based on recently proposed and validatggrreSponds to a sm_ooth.ness term Wh'Ch gives a penalty to
algorithms [9], [11], [29]. It is not based on any Singlenelghborlng nodes with different detection Iabgls. Depgndmg
geometric mozjel bl,,lt caﬁ be regarded as an interpolatioonrl the approach the labels of the change detection are different.

based approach employing a free-form deformation strategy
[29] coupled with detection labels. In particular, displacements 1) Unsupervised Change Detection: ‘Change’ or ‘No-

which can be considered known in a restricted set of Iocatiogﬁange-: We employ two labels in order to address the change

are interpolated for the rest of the image domain. The modQ@liection problemS 2 f 0; 1g. The energy term in this case
is rich enough to describe the transformations that exist in thg, pe formulatedpas follow:

images in order to reach an optimal solution by emplogrgy

a free-form deformation. This strategy employs a grid which Vogieh (153 15) = 1ilg 1] (4)
is superimposed on the image and the transformations e
calculated using these control points (nodes). The implemente
multiscale approach can address large initial displacement®) Supervised Change Detection: ‘from-to’ change trajec-
(note that the solution is calculated over the superimposgflies In this case the total number of the change detection
grid and not over image pixels). labels isk and depends on the number of different change

More speci cally, let us consider a pair of images wherg|asses that are denetf 2 f0;:::;kg. Respectively the
A is the source image and is the target image de ned on energy term can be formulated as follows:

erep and g are neighboring nodes.

a domain . The goal of image registration is to de ne a 8 c e
transformation magd@ which will project the source image to 20 Ig=1g
the target image as presented below: Vogen (I 1) = o 15815 & (5 =0 (5)
" ¢ otherwise
V()= A(X) T(x) @) -
. o wherep andq are neighboring nodes;, ¢, are constant values

Let us denote a discrete set of labklgg =[1;:::;n], and \hich penalize different change values where> ¢, and (j.)

a set of discrete displacements= [ dY;:::;d"]. We seek

) ° is the or operator.
to assign a label?® to each grid node, where each label

corresponds to a discrete displacermﬂﬁf 2 . The energy

formulation for the registration comprises of a similarity cod?- Coupling the Energy Terms

(that seeks to satisfy (2)) and a smoothness penalty on therhe coupling between change detection and registration is

deformation domain. achieved through the interconnection between the two graphs.
Vogreq (1769 1769) = jjd'{fg dee i 3) Assuming a pair of correspono_ling nodes belonging to each

pared e graph, one would expect that in the absence of change the
wherep andq are neighboring nodes amt™ their calculated similarity cost should be satis ed. By coupling the two terms,
displacements for each registration labéy . we achieve a more relaxed deformation eld in the changed
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areas. In particular, we formulate with the following manndsinary term for the change detection. Moreowver, wo, w3

the two cases: are the weights of each term aht(p) the neighbourhood of
) ) each nodep.
1) Ur?superwsed Change Detection: 'Change’ or 'No- | gych a setting, optimizing an objective function seeking
change® similarity correspondences is not meaningful and deformation
. Vreg:ch (|Leg : |B) = |g C+ vectors should be the outcome of the smoothness constraints
) ) e (6) on the displacement space. However, the areas of changes, and
@ 1) Aiixo P (VO A+ de ))dx their type if required, are unknown and is one of the objectives

of the optimization process. Without loss of generality we
where we simply take all pixels in the vicinity of the graph.an assume that the matching cost addressing to change
node and project their similarity valueg . ) back to the grid can correspond to a value that can be determined from the
node with a weight that is proportional to the distance using thgstripution of these costs on the entire domain (it is metric
projection function”. Different similarity functions (:) can gependent). Let us consider that this value is known and that

be used (as demonstrated in Section IV) in order to compa&ndependent from the image displacements and thus we can
the two images, while a constant val(eis used in order to gjstinguish the regions that have been changed.

de ne the changed areas. These two terms are integrated as iMherefore, the advantage of the developed single-shot
(6) which simply uses a xed cost in the presence of chang@gmework is mainly that by solving the two problems simul-
and the similarity value in their absence. taneously rst we have less false positives due to unregistered
data and secondly the registration is robust to multitemporal
datasets since the corresponding energy terms are relaxed in
Z regions with possible changes. Moreover, the framework can
Viegieh (I59515) = Liswo (C+ ~(ix  pij)e '5 ) gx) detect the.optir’qal labels which indicate a specfrom-to
change trajectories.
+Lig=o C AGix o pil) (V(X);A(x + dee ) dx) It sh_ould be noted th_at the de_veloped registration and change
detection framework is generic and modular and one can
7 integrate any training procedure, classi er, computed features,
where apart from the xed cosE, we use the classi cation number of classes making it ideal for various applications [27].
scores, ¢(x), for all the different labels of change. TheFmaIIy, the pairwise costs for both terms have been described
classi cation scores are independent from the model and hi#d(3) and (4) or (5).
been calculated on pixel level. Using with the same way the
projection function, the classi cation scores are projected ® Optimization
each node. The computed classi cation scores are used t
de ne the different type of change$rdm-to change trajecto-
ries from (7)) when required. With we denote the indicator
function.

2) Supervised Change Detection: ‘from-to' change trajec-
tories

%rhere are several techniques for the minimization of an
MRF model which can be generally summarized into those
based on the message passing and those on graph cuts
[35]. The rst category is related to the linear programming
relaxation [14]. The optimization of the implementation is
E. Energy Formulation performed by FastPD which is based on the dual theorem
With a slight abuse of notation we consider a node withf linear programming [15], [16]. In particular FastPD is
an indexp 2 G (we recall that the two graphs are identicalpn generalisation of -expansion and it exploits information
corresponding to the same node throughout the two grapi¥ning not only from the original MRF problem, but also from
(Greg, Gen). We can now integrate all terms to a singlé dual problem. That way FastPD computes exactly the same
energy which detects changes, establishes correspondesgégtion as -expansion but with substantial speedup. Finally,
and imposes smoothness in the change detection and ahether advantage of FastPD is that it guarantees an almost

deformation map as follows: optimal solution for a wide class of NP-hard MRF problems.
Eregich (1519) = IIl. | MPLEMENTATION

c. reg reg . reg N A multi-scale framework has been designed for the min-
Eopt (I%179) + Ereg (I75157) + Een(lpi1g) = imization of the MRF energy. Concerning the image, itera-

tively different levels of Gaussian image pyramids are used.

Wi Viegen (I7:15) + w2 Voaireg (Ip115™) Concerning the grid, we again consider different levels of it,
p2Gx X P2Greg GZN(P) beginning with a sparse one. The objective of the multi-scale
+ W3 qu;ch(|,§: |g) approach is twofold: (i) allows an ef cient sampling of the
P2Gen g2N (p) search space that is critical given the product label space (this

(8) allows to progressively move closer and closer to the solution
where Vreg:ch (I5°9;15) represents the coupling term for eactand do not get stuck to a local minimum), (ii) accelerates
node at each labeNygreq (1579 1579) the pairwise or binary convergence of the method and decreases computational load.
term for the registration an/pq.cn (I5;15) the pairwise or A single shot framework without a multiscale approach, would
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require tremendous sampling of the search space to handle
large deformations, and will make the approach suboptimal

both in terms of convergence as well as in terms of solution nDv| = MR RED

guality. The different levels of the images and the grid with NIR + RED

the consistency of nodes in the grid can be de ned by the user. ONIR +1 " @NIR +1)2 8(NIR RED)
For optimizing very high resolution multispectral satellite data MSAV!2 = 5

we used2 image and3 grid levels.

Continuing with the label space, we search for possible For the supervised approach, the value of the constant
displacements alon@ directions &, y and diagonal axis), parameter regarding the change detection energy term and the
while the change labels are.g., for the rst unsupervised SADG metric was set td90.
case) always two and correspond to change or no-changés far as the other parameters of the developed framework
description. As far as the registration labels are concern&dge concerned (regarding both the unsupervised and supervised
their values are not the same at each level, but dependingagproaches), the number of iterations per level was s&0to
the parameter label factor, they change in order to be closeitheé regularization parameter for the registratior8foand for
optimal. Consider that in each grid level the source image ¢dange detection t8:5. The function used for the projection
deformed according to the optimal labels and it is updaté®m the pixel to nodes and reverse was the Cubic B-splines.
for the next level. In our case, we used the vali® for Concluding, the parameter that controls the balance between
updating the label values for registration. Last but not leagfie absolute difference and the gradient inner product was set
the maximum displacement has to be smaller tBahtimes to 0:2.
the distance of two consecutive nodes in order to preserve the
right displacement of every node. The maximum displacement |V. EXPERIMENTAL RESULTS AND VALIDATION

dfepends on the initial_ distance between nod_es. For_im_porta_ntrhe developed framework was applied to several pairs
displacements, the grid should be sparse during the initial QBF very high resolution, multispectral images from differ-
levels, while gradually the grid is becoming more and moig. " iallite sensors.€., Quickbird and WorldView-2). Al
dense allowing the recovery of relative small displacement%altasets were acquired, between the years of 2006 and 2011.
Furthermore, a number of methods for block matching came multi-temporal dataset covers approximately4akm?
be considered. Semantic changes in multitemporal imageggion in the East Prefecture of Attica in Greece (Fig. 3 and
affect the local intensities and also change the structure Bfble I1). All raw images were atmospherically corrected,
the region. One of the problems in traditional unsupervisgghile after the pansharpening their size were approximately
change detection techniques, is that change in intensities dgggo by 7000 pixels with a spatial resolution of approximately
not directly mean semantic change. In our case, this wgg centimeters. The dataset is quite challenging both due
crucial since we focused and optimizing the unsupervised its size and the pictured complexity derived from the
framework for urban and peri-urban regions and man-magdgferent acquisition angles. For the quantitative evaluation
objects changes. Therefore, in our implementation we compafe ground truth was manually collected and annotated after
not only the intensity differences but also the differences in thg, attentive and laborious photo-interpretation done by two
edges of the image, calculated by the gradient inner prodififfierent experts.
(SADG function). On the other hand any other similarity mea- Extensive experiments were performed over several images
sure such as mutual information, normalized cross correlatigfhirs and based on several similarity metrics namely the
ratio correlation can be used. In Section IV we have tested
different similarity functions. Depending on the similarity
function and the required system sensitivity the value of ] East Prefecture of Attica
constant parameter can be modi ed. In all our experimel |« o WEUE_ 2359E 208 2#1E
with the unsupervised change detection framework and
use of the SADG metric, which was optimized for detectitZ|
man-made changes, the corresponding constant paramete| |
set t0100.

Regarding the integrated supervised classication pro¢
dure, we have de ned ve different types of chandeo(m-to
change trajectories) and we have trained respectively a S|
classier. In particular, a 50% splitting ratio was employeg P
for the training procedura.e., half of the images in the A
datasets have been used for training and the other half i =  *= ==
testing. The features used for the classi cation were based big. 3: The multitemporal dataset is covering approximately
different spectral bands, the NDVI and MSAVI-2 indexes, a& 14knt region in the East Prefecture of Attica, Greece. The
well as the similarity ( ) between the two multitemporal datadataset contains very high resolution, multispectral satellite
In particular NDVI and MSAVI-2 indexes are following theoptical data over a complex terrain with urban, peri-urban,
standard equations as presented below: agricultural, coastal and forest regions.
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Spectral
Date of .
. S 9 Band Size (GB

Satellite Data Acquisition (nu?:bZr) ize (GBS) Quality = TP + IIIS +FEN (11)
Pgﬁgf,ffr'{,‘;ned May 2006 4 0.32 The True Positives (TP), False Negatives (FN) and False
QuickBird Aoril 2008 . 032 Positives (FP) were calculated in all cases. In particular, TP is
PanSharpened Pt ‘ the number of correctly detected changes, FN is the number
Worldview-2 April 2010 8 0.90 of c'hanges that have not been detected by the algorithm and
PanSharpened FP is the number of false alarms.

Worldview-2 April 2011 8 0.90

PanSharpened

A. Evaluating the performance of the registration procedure

TABLE II: The multimodal dataset includes satellite optical For the evaluation of the registration procedure we have
multispectral images all of them pansharpened on 0.5m a@@jculated the mean displacement errors before and after
with different acquisition dates. the application of the developed framework. Several ground
control points (GCPs) were manually collected in both un-
registered and registered image pairs. It should be noted that
Sum of Absolute Differences (SAD),the Sum Absolute dhost of the GCPs were collected on building roof tops and
Differences plus Gradient Inner Products (SADG), the SuBbrners since the goal was to evaluate the performance mainly
of Square Differences (SSD), the Normalized Cross Correlggainst relief displacements where the largest errors occur.
tion (NCC), the Normalized Mutual Information (NMI), the|n general, in all other regions the framework resulted in
Correlation Ratio (CR), the Sum of Gradient Inner Productyb-pixel accuracy. Moreover, we validated the registration
(GRAD), the Normalized Correlation Coef cient plus Sumenergy term alone based on the similar framework of [11].
of Gradient Inner Products (CCGIP), the Hellinger Distanag particular, for exactly the same experimental setup, results

(HD), the Jensen-Renyi Divergence (JRD) and the Mutugbm the proposed energy formulation (8) and results with the
Information (MI). The experimental results were evaluateggistration term alone were compared.

both qualitative and quantitative for the registration and the |n Fig. 4 and Table | the mean displacement errors (in
change detection tasks. pixels) in both directiongx;y) and the mean distance before
Moreover, in order to evaluate quantitatively the developexhd after the registration are presented. In order to validate the
algorithm for the change or no-changedetection task, the framework, results from experiments with several similarity
standard quality metrics of Completeness, Correctness andtrics are shown. It can be observed that the developed
Quality were calculated at object level. framework acts quite robustly regarding the registration pro-
cedure since in all cases regardless of the employed similarity
TP . .
— (9) metric the mean displacement errors were lower tBgh
TP+FN pixels in both axis. The initial mean distance (displacement
TP DS) of the unregistered image pairs was more than 11 pixels

Completeness=

Correctness = TP + EP (10)  and after the application of the developed framework based
Registration term Developed Framework
Ereg Ecpl + Ereg + Een Comparison

| Dx (pixels) Dy (pixels) DS (pixels) Dx (pixels) Dy (pixels) DS (pixels) DS Difference

U”rz%:ts;ered 7.61 7.31 11.04 7.61 7.31 11.04 ;
SADG 2.60 1.93 3.24 2.45 2.03 3.18 0.06
SAD 2.63 1.27 2.92 2.57 1.32 2.89 0.03
SSD 3.04 2.09 3.69 3.12 2.04 3.73 -0.04
NCC 2.23 1.33 2.60 2.13 1.23 2.46 0.14
NMI 2.60 1.86 3.20 2,53 1.92 3.18 0.02
CR 2.62 151 3.02 2.67 1.04 2.87 0.15
GRAD 3.18 1.66 3.59 3.23 1.74 3.67 -0.08
CCGIP 2.69 2.41 3.61 2.84 25 3.78 -0.17
JRD 2.38 1.29 2.71 2.34 1.34 2.70 0.01
HD 2.38 1.12 2.63 2.42 1.08 2.65 -0.02
MI 2.68 1.25 2.96 2.76 1.02 2.94 0.02

TABLE I: Quantitative evaluation regarding the performance of the registration procedure. The mean displacement errors for
both axis Dx & Dy) and the mean distance (DS) before and after the convergence of the developed algorithm are presented.
Different similarity metrics are considered, while a comparison with the registrationEggnalone is provided (left).
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Fig. 4: The performance of different similarity functionsrig. 5: Evaluating the performance of different similarity
during registration in terms of mean displacement error f@iinctions for the unsupervised change detection formulation
both axis Px, Dy) and the mean distanc®$§). based on the standard measures of detection completeness and
correctness at object level.
on the NCC similarity measure the mean displacement error
was less than 2.5 pixels (2.13 along tkeaxis and 1.23 .

along they, respectively). Regarding the registration the NC round truth. There are sporadically a few FN and FP due to,

metnc :Jutperzgo;rr:}edv\;n aillnour exr?je:;mer\;\:istr:hti otlrilterr stm;llari most cases, high spectral variations between soil, gravel and
eRasu (redsina th S mas r arﬁ:c? tha gev | defr ﬁ]av\llj ?k[ n§1er construction materials between the two acquisition peri-
egarding Ih€ comparison ot the developed framework agfe -, o) cases, the experimental results were derived based

. . . .0
the performance of the registration term alone, quantltatl\é% the SADG similarity measure and parameters optimized
$6r man-made object changes as mentioned in Section IlI.

results (Table I, left) indicate that the average (DS) differen
including all examined similarity measures was less thq{] can be observed that the framework can detect changes
ated to man-made objects based both on the spectal (

0.07 pixels (Table 1, right). Thus, the coupling of the energy,
terms didn't affect the registration performance, indicating th%%solute difference) and geometric featuies (nner gradient
products).

the registration similarity constraint3's®) were ef ciently
relaxed in the presence of change. Quantitative evaluation results are presented in Table Il and
_ ) Fig. 5 towards the detection of changes regarding man-made

B. Evaluating the performance of the Unsupervised Changepjects. Several experiments have been performed with differ-
Detection: 'Change’ or ‘No-change’ ent similarity measures based on the unsupervised formulation.

Regarding the evaluation for the unsupervised change d&s it can be observed the SAD, SSD and SADG similarity
tection task, experimental results after the application of timeeasures resulted into the highest detection completeness and
developed method are shown in Fig. 6. In particular, theorrectness rates. However, SADG outperformed the other
detected changes are shown with a red color while the groumges with more than 14% regarding the Overall Quality
truth polygons are shown with green. It can be observed thatasure. SAD and SSD were signi cantly more sensitive

most cases the detected changes are in accordance with the

Change Detection Term Developed Unsupervised Framework
Ech Ecpl + Ereg + Ech

Similarity \ Completeness % Correctness % Ow. Quality\ %Gompleteness % Correctness % Ov. Quality %
SADG 83.2 52.6 51.3 92.2 80.1 74.4
SAD 85.3 54.8 50.07 95.2 64.9 60.01
SSD 71.3 60.4 48.6 94.1 67.3 61.4
NCC 56.7 42.9 32.3 77.7 40.5 34.8
NMI 49.5 51.4 33.7 55.3 62.8 41.5
CR 57.1 24.4 20.6 60.5 30.3 25.2
GRAD 33.5 31.6 19.4 35.1 40.3 23.1
CCGIP 59.5 28.5 23.9 77.8 38.8 34.9
JRD 30.2 45.2 22.1 39.6 56.7 30.4
HD 53.2 46.7 33.1 83.6 65.1 57.8
Ml 40.1 49.3 28.4 41.9 51.7 30.1

unsupervised formulation

TABLE llI: Quantitative evaluation regarding the performance of the unsupervised change detection procedure. The standard
measures of detection completeness and correctness at object level have been calculated for different similarity measures fo
the unsupervised approach.
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Case #1

Case # 2

Fig. 6: Experimental results after the application of the developed change detection framework based on the unsupervised
formulation Eq from equation (6)) for two sub-regions (case #1 and case #2) of the study area. The detected changes are
shown with red color and the ground truth data with green. Both are superimposed onto the very high resolution satellite

images acquired in 2006 (Quickbird, left) and 2011 (Worldview-2, right).
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0:8|- 2 a function of the Cost parameter. It can be observed that for

S 07} i the SADG metric the values between 90 and 120 delivered the
%; 061 | highest rateg.g.,more than 70%. The performed experiments

L ™ and the acquired quite promising results demonstrate the

S 05 - extreme potentials of the developed unsupervised framework

= 04l i in detecting changes related to man-made objects.

5 In addition, the computational ef ciency of the proposed
= 031 | framework was also evaluated. In particular, in Table IV the
§ 0:2 - computational time required for different image sizes with the
O o1l | SADG metric is presented. With a standard laptop equipped
with an Intel Core i7-4700HQ CPU at 2.40GHz and 8GB

o | | | ‘ ‘ ‘ ] RAM, it took less than 30 minutes for the convergence of

50 70 90 110 130 150 170 190 210 230 the unsupervised registration/change detection algorithm. The

C values computational time is mainly depending on the selected set

Fig. 7: The resulting Overall Quality (%) measure as gf parameters which specif.g.,the number of nodes in the

function of the valueC (equation (6)) which corresponds togrid, the number of labels or the number of iterations per level,
the xed Cost for the unsupervised formulation. The highes s well as the selected similarity metric. In accordance with

performance rates were acquired for values around 100 i literature, in all our experiments'the SAD, SSD, NCC and
the Overall Quality reaching a 74.4% SADG were the quickest ones, while the JRD and MI were

the most time consuming.

scoring higher in the detection completeness but produced ] ]

relative more false alarms. SADG metric which is based- Evaluating the performance of the Supervised Change
both on spectral and edge differences delivered the highB§tection: from-to” change trajectories

correctness rates while managed to detect more than 92% dfor the evaluation of the supervised change detection frame-
the existed changes. work and the detection dirom-to change trajectories, refer-

Moreover, in order to evaluate the performance of thence/ground truth data were collected based on an attentive,
change detection term alone exactly the same experimelatsorious manual annotation. The ground truth data contained
were performed with the same similarity and parameter séite mainfrom-to change trajectories and in particular, ve
tings with the developed framework. Note that for these eglifferent classesi.g, change trajectories) were annotated and
periments with only thé& , (Table IlI, left), image pairs were are brie y described below:
registered beforehand based on a non-rigid procedure in order No change.
to account optimally for relief displacements which were inall  Class # 1: Soil to vegetation (yellow color)
images, region and dates important due to the complex terrain Class # 2: Soil to man-made object (magenta)
and acquisition angles. Results are presented in Table Il (left) Class # 3: Vegetation to soil (cyan)
and indicate the signi cant lower performance regarding the Class # 4: Vegetation to man-made object (blue)

Overall Qualityi.e., lower than 25% than the one achieved Class # 5: Man-made to man-made object (red)

through the Qeyelpped framework (74.4%). In particular, with |, Fig. 8, results after the application of the developed
the same similarity measure&cn produced several false g peryvised framework and the detection of specic change
alarms affecting signi cantly the detection correctness ratet?ajectories are presented. In particular, on the left hand
indicating that the coupling and registration labels (under theyo o Fig. 8, the detected changes are superimposed with
proposed jOiNtEpy + Ereg + Ecn formulation) constrained giterent colors on the Quickbird image of 2006. On the right
more the detection process, reducing the false alarms whilgng side, a zoom into two subregions is presented for both
increasing the true positives. _ _ images (dates)e. Quickbird (2006) and Worldview-2 (2011).

In Fig. 7 the measured Overall Quality (%) is presented g$e gifferent types of change trajectories are indicated with
different colors and are described in the corresponding legend.
The majority of the detected changes belonged to Class #5
indicating that the dominant change trajectories were from
man-made objects to other man-made object types. Moreover,

Computational Performance
Region size Image size Convergence time

; 5 S L
in km in pixels in_min. results from the quantitative evaluation are presented in Ta-
0.25 1000x1000 6.3 ble V.
0.5 1500x1300 20.5 In particular, the calculated confusion matrix after the
1 2000x2000 21.7 application of the supervised approach (for the image pairs
15 2800x2140 53.3

of Fig. 8) is presented based on the SADG metric. The

i resulting Overall Accuracy was 73.4%, while the total number
TABLE IV: The computational performance of the developegs changes were more than 430. The larger number of false

unsupervised framework with the SADG metric optimised 0fjarms came from the misclassi cation errors between Class
man-made change detection. #5 and Class #2, where 'soil to man-made’ and 'man-made
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‘from-to' Change Trajectories

Class # 1: Soil to vegetation

Class # 2: Soil to man-made

Class # 3: Vegetation to soll

Class # 4: Vegetation to man-made
Class # 5: Man-made to man-made

Fig. 8: Experimental results after the application of the supervised change detection framework towards the defemticto of

change trajectories. The detected changes (belonging to different change classes) are projected onto the Quickbird 2006 imag
(left). A zoom into two subregions is shown on the right hand side where the detected change trajectories are shown in both
images (datesje., left: Quickbird (2006) and right: Worldview-2 (2011).

Evaluating the performance of the supervised change detection

Reference Data
# of objects Class#1 Class#2 Class#3 Class#4 Class#5 Total UA (%)

Classi cation
Class # 1 38 2 8 1 0 49 77.6
Class # 2 2 54 0 3 17 76 71.1
Class # 3 2 5 58 11 3 79 73.4
Class # 4 5 0 10 59 6 80 73.8
Class # 5 5 21 2 8 117 153 76.5
Total changes 52 82 78 82 143 437
PA (%) 73.1 65.9 74.4 72.0 81.8

Overall accuracy = 73.4% Kappa coef cient = 67.5%

TABLE V: The resulting confusion matrix after the application of the developed supervised change detection framework (for
the image pairs of Fig. 8). The resulting Overall Accuracy was 73.4%, while the total number of changes were more than 430.

to man-made' changes are confused. As it can be observiedpormation based on certain spectral bands and indexes which
changes belonging to Class #5 resulted into the higher BAuld not address the similar spectral behaviour between soil
rates (82%). On the other hand, Class #2 resulted into thed man-made objectsg.,similarities between red roof tiles
lower PA and UA rates. This is mainly due to the fact thadnd red clay soil.

the employed classi cation features contained mainly spectral
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V. CONCLUSION [8]

In this paper we designed, developed and validated a novel
framework which addresses concurrently the registration and
change detection tasks in very high resolution multispectral
multitemporal optical satellite data. Furthermore, an extensiolf!
for classifying different types of changes is proposed. The
developed method is modular, scalable and metric free. The
formulation exploits a decomposed interconnected graphical
model formulation where registration similarity constraints aré0l
relaxed in the presence of change detection. The unsuper-
vised framework was optimized for the detection of changes
related to man-made objects in urban and peri-urban enf4l]
ronments. Moreover, the supervised formulation was able to
detect severdtom-to changdrajectories. The performed large
scale experiments and the acquired quite promising results
demonstrate the extreme potentials of the developed methdd]
The integration of prior knowledge regarding texture and
geometric features under a higher order formulation [10], [13]
is currently under consideration ands®U implementation is
among the future perspectives as well. 13]
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