H. T. Banks, R. Baraldi, J. Catenacci, and N. Myers, Parameter Estimation Using Unidentified Individual Data in Individual Based Models, Mathematical Modelling of Natural Phenomena, vol.11, issue.6, 2016.
DOI : 10.1051/mmnp/201611602

J. Clairambault and O. Fercoq, Physiologically Structured Cell Population Dynamic Models with Applications to Combined Drug Delivery Optimisation in Oncology, Mathematical Modelling of Natural Phenomena, vol.11, issue.6, 2016.
DOI : 10.1051/mmnp/201611604

URL : https://hal.archives-ouvertes.fr/hal-00750633

A. Bouchnita, K. Bouzaachane, T. Galochkina, P. Kurbatova, P. Nony et al., An Individualized Blood Coagulation Model to Predict INR Therapeutic Range During Warfarin Treatment, Mathematical Modelling of Natural Phenomena, vol.11, issue.6, p.11, 2016.
DOI : 10.1051/mmnp/201611603

A. Modepalli-susree and B. Mohan-anand, Reaction mechanisms and kinetic constants used in mechanistic models of coagulation and fibrinolysis, Math. Model. Nat. Phenom, vol.11, issue.6, 2016.

T. O. Shepelyuk, M. A. Panteleev, and A. N. Sveshnikova, Computational modeling of Quiescent Platelet Energy Metabolism in the Context of Whole-body Glucose Turnover, Mathematical Modelling of Natural Phenomena, vol.11, issue.6, 2016.
DOI : 10.1051/mmnp/201611606

P. Macheras and A. , Iliadis, Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics, Homogeneous and Heterogeneous Approaches, pp.293-308, 2006.
DOI : 10.1007/978-3-319-27598-7

C. V. Fletcher, K. Staskus, S. W. Wietgrefe, M. Rothenberger, C. Reilly et al., Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues, Proceedings of the National Academy of Sciences, vol.111, issue.6, pp.111-2307, 2014.
DOI : 10.1073/pnas.1318249111

R. Lorenzo-redondo, H. R. Fryer, T. Bedford, E. Y. Kim, J. Archer et al., Persistent HIV-1 replication maintains the tissue reservoir during therapy, Nature, vol.22, issue.7588, pp.530-51, 2016.
DOI : 10.1038/nature16933

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865637

Y. Fukazawa, R. Lum, A. A. Okoye, H. Park, K. Matsuda et al., B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers, Nature Medicine, vol.9, issue.2, pp.132-139, 2015.
DOI : 10.1038/nm.3781

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320022

A. Licht and G. Alter, A Drug-Free Zone???Lymph Nodes as a Safe Haven for HIV, Cell Host & Microbe, vol.19, issue.3, pp.275-276, 2016.
DOI : 10.1016/j.chom.2016.02.018

G. Bocharov, A. Danilov, Y. Vassilevski, G. I. Marchuk, V. A. Chereshnev et al., Reaction-Diffusion Modelling of Interferon Distribution in Secondary Lymphoid Organs, Mathematical Modelling of Natural Phenomena, vol.6, issue.7, pp.13-26, 2011.
DOI : 10.1051/mmnp/20116702

G. A. Bocharov, A. A. Danilov, Y. V. Vassilevski, G. I. Marchuk, V. A. Chereshnev et al., Simulation of the interferon-mediated protective field in lymphoid organs with their spatial and functional organization taken into consideration, Doklady Biological Sciences, vol.439, issue.1, pp.194-196, 2011.
DOI : 10.1134/S0012496611040089

T. Junt, E. Scandella, and B. Ludewig, Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence, Nature Reviews Immunology, vol.174, issue.10, pp.764-775, 2008.
DOI : 10.1016/S1074-7613(02)00397-7

T. Lammermann and M. Sixt, The microanatomy of T-cell responses, Immunological Reviews, vol.64, issue.1, pp.26-43, 2008.
DOI : 10.1016/j.nbd.2006.08.005

G. Bocharov, R. Züst, L. Cervantes-barragan, T. Luzyanina, E. Chiglintsev et al., A Systems Immunology Approach to Plasmacytoid Dendritic Cell Function in Cytopathic Virus Infections, PLoS Pathogens, vol.70, issue.7, p.1001017, 2010.
DOI : 10.1371/journal.ppat.1001017.s007

J. Keener and J. Sneyd, Mathematical Physiology, 2009.
DOI : 10.1007/978-0-387-75847-3

R. Savinkov, A. Kislitsyn, D. J. Watson, R. Van-loon, I. Sazonov et al., Data-driven modelling of the FRC network for studying the fluid flow in the conduit system, Engineering Applications of Artificial Intelligence, 2016.
DOI : 10.1016/j.engappai.2016.10.007

M. Jafarnejad, M. C. Woodruff, D. C. Zawieja, M. C. Carroll, and J. E. Jr-moore, Modeling Lymph Flow and Fluid Exchange with Blood Vessels in Lymph Nodes, Lymphatic Research and Biology, vol.13, issue.4, pp.234-247, 2015.
DOI : 10.1089/lrb.2015.0028

A. Kislitsyn, R. Savinkov, M. Novkovic, L. Onder, and G. Bocharov, Computational Approach to 3D Modeling of the Lymph Node Geometry, Computation, vol.3, issue.2, pp.222-234, 2015.
DOI : 10.3390/computation3020222

L. J. Cooper, J. P. Heppell, G. F. Clough, B. Ganapathisubramani, and T. Roose, An Image-Based Model of Fluid Flow Through Lymph Nodes, Bulletin of Mathematical Biology, vol.183, issue.7, pp.52-71, 2016.
DOI : 10.1007/s11538-015-0128-y

F. Billy and J. Clairambault, Designing proliferating cell population models with functional targets for control by anti-cancer drugs. Discrete and Continuous Dynamical Systems -Series B, pp.865-889, 2013.
DOI : 10.3934/dcdsb.2013.18.865

URL : https://hal.archives-ouvertes.fr/hal-00726195

F. Billy, J. Clairambault, F. Delaunay, C. Feillet, and N. Robert, Age-structured cell population model to study the influence of growth factors on cell cycle dynamics, Mathematical Biosciences and Engineering, vol.10, issue.1, pp.1-17, 2013.
DOI : 10.3934/mbe.2013.10.1

URL : https://hal.archives-ouvertes.fr/hal-00843360

F. Billy, J. Clairambault, and Q. Fercoq, Optimisation of Cancer Drug Treatments Using Cell Population Dynamics, Mathematical Models and Methods in Biomedicine, Lecture Notes on Mathematical Modelling in the Life Sciences, pp.265-309, 2013.
DOI : 10.1007/978-1-4614-4178-6_10

URL : https://hal.archives-ouvertes.fr/hal-00770366

F. Billy, J. Clairambault, O. Fercoq, S. Gaubert, T. Lepoutre et al., Synchronisation and control of proliferation in cycling cell population models with age structure, Mathematics and Computers in Simulation, vol.96, pp.96-66, 2014.
DOI : 10.1016/j.matcom.2012.03.005

URL : https://hal.archives-ouvertes.fr/hal-00662885

J. Clairambault, Deterministic Mathematical Modelling for Cancer Chronotherapeutics: Cell Population Dynamics and Treatment Optimization, Mathematical Oncology, pp.265-294, 2013.
DOI : 10.1007/978-1-4939-0458-7_9

A. Lorz, T. Lorenzi, M. E. Hochberg, J. Clairambault, and B. Perthame, Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies, ESAIM: Mathematical Modelling and Numerical Analysis, vol.47, issue.2, pp.47-377, 2013.
DOI : 10.1051/m2an/2012031

URL : https://hal.archives-ouvertes.fr/hal-00714274

A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil, and B. Perthame, Modeling the Effects of Space Structure and Combination Therapies on Phenotypic Heterogeneity and Drug Resistance in Solid Tumors, Bulletin of Mathematical Biology, vol.65, issue.1, pp.1-22, 2015.
DOI : 10.1007/s11538-014-0046-4

URL : https://hal.archives-ouvertes.fr/hal-00921266

B. Dahlback, Blood coagulation, The Lancet, vol.355, issue.9215, pp.1627-1632, 2000.
DOI : 10.1016/S0140-6736(00)02225-X

L. De-pillis, E. J. Graham, K. Hood, Y. Ma, A. Radunskaya et al., Injury-initiated clot formation under flow: a mathematical model with warfarin treatment, In: Applications of Dynamical Systems in Biology and Medicine, pp.75-98, 2015.

E. V. Dydek and E. L. Chaikof, Simulated Thrombin Generation in the Presence of Surface-Bound Heparin and Circulating Tissue Factor, Annals of Biomedical Engineering, vol.31, issue.Suppl 1, pp.1072-1084, 2016.
DOI : 10.1007/s10439-015-1377-5

T. Wajima, G. K. Isbister, and S. B. , A Comprehensive Model for the Humoral Coagulation Network in Humans, Clinical Pharmacology & Therapeutics, vol.16, issue.3, pp.290-298, 2009.
DOI : 10.1007/BF00203790

R. Burghaus, K. Coboeken, T. Gaub, L. Kuepfer, A. Sensse et al., Evaluation of the Efficacy and Safety of Rivaroxaban Using a Computer Model for Blood Coagulation, PLoS ONE, vol.25, issue.Pt 1, 2011.
DOI : 10.1371/journal.pone.0017626.s003

S. D. Bungay, P. A. Gentry, and R. D. Gentry, A mathematical model of lipid-mediated thrombin generation, Mathematical Medicine and Biology, vol.20, issue.1, pp.105-129, 2003.
DOI : 10.1093/imammb/20.1.105

M. F. Hockin, K. C. Jones, S. J. Everse, and K. G. Mann, A Model for the Stoichiometric Regulation of Blood Coagulation, Journal of Biological Chemistry, vol.277, issue.21, pp.18322-18333, 2002.
DOI : 10.1074/jbc.M201173200

R. Burghaus, K. Coboeken, T. Gaub, C. Niederalt, A. Sensse et al., Computational investigation of potential dosing schedules for a switch of medication from warfarin to rivaroxaban-an oral, direct Factor Xa inhibitor, Frontiers in Physiology, vol.5, pp.417-417, 2013.

X. Zhou, D. R. Huntjens, and R. A. Gilissen, A Systems Pharmacology Model for Predicting Effects of Factor Xa Inhibitors in Healthy Subjects: Assessment of Pharmacokinetics and Binding Kinetics, CPT: Pharmacometrics & Systems Pharmacology, pp.650-659, 2015.
DOI : 10.1002/psp4.12035

I. V. Gribkova, E. N. Lipets, I. G. Rekhtina, A. I. Bernakevich, D. B. Ayusheev et al., The modification of the thrombin generation test for the clinical assessment of dabigatran etexilate efficiency, Scientific Reports, vol.97, issue.1, pp.6-690, 2016.
DOI : 10.1016/j.thromres.2012.10.011

L. Cromme, H. Völler, F. Gäbler, A. Salzwedel, and U. Taborski, Computer-aided dosage in oral anticoagulation therapy using phenprocoumon, pp.30-183, 2010.

A. Gulati, G. K. Isbister, and S. B. , Scale reduction of a systems coagulation model with an application to modeling pharmacokineticpharmacodynamic data. CPT: Pharmacometrics & Systems Pharmacology, pp.1-8, 2014.

D. Luan, Computational modeling and simulation of thrombus formation. Doctoral dissertation, 2009.

L. D. Lynd and B. J. O-'brien, Advances in risk-benefit evaluation using probabilistic simulation methods: an application to the prophylaxis of deep vein thrombosis, Journal of Clinical Epidemiology, vol.57, issue.8, pp.795-803, 2004.
DOI : 10.1016/j.jclinepi.2003.12.012

L. A. Parunov, O. A. Fadeeva, A. N. Balandina, N. P. Soshitova, K. G. Kopylov et al., Improvement of spatial fibrin formation by the anti-TFPI aptamer BAX499: changing clot size by targeting extrinsic pathway initiation, Journal of Thrombosis and Haemostasis, vol.95, issue.Suppl. 6, pp.9-1825, 2011.
DOI : 10.1111/j.1538-7836.2011.04412.x

A. Undas, M. Gissel, B. Kwasny-krochin, P. Gluszko, K. G. Mann et al., Thrombin generation in rheumatoid arthritis: Dependence on plasma factor composition, Thrombosis and Haemostasis, vol.104, issue.2, pp.224-230, 2010.
DOI : 10.1160/TH10-02-0091

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152205

L. E. Clegg and F. M. Gabhann, Systems biology of the microvasculature, Integr. Biol., vol.8, issue.5, pp.498-512, 2015.
DOI : 10.1039/C4IB00296B

K. E. Brummel-ziedins, C. Y. Vossen, S. Butenas, K. G. Mann, and F. R. , Thrombin generation profiles in deep venous thrombosis, Journal of Thrombosis and Haemostasis, vol.80, issue.11, pp.2497-2505, 2015.
DOI : 10.1097/01.moh.0000130314.33410.d7

A. Bouchnita, G. Bocharov, A. Meyerhans, and V. Volpert, Hybrid approach to model the spatial regulation of T cell responses, BMC Immunology, 2016.

B. Ludewig, J. V. Stein, J. Sharpe, L. Cervantes-barragan, V. Thiel et al., A global ???imaging?????? view on systems approaches in immunology, European Journal of Immunology, vol.185, issue.12, pp.3116-3125, 2012.
DOI : 10.1002/eji.201242508

S. R. Allerheiligen, Impact of Modeling and Simulation: Myth or Fact?, Clinical Pharmacology & Therapeutics, vol.93, issue.4, pp.413-415, 2014.
DOI : 10.1038/clpt.2014.122

P. L. Bonate, What Happened to the Modeling and Simulation Revolution?, Clinical Pharmacology & Therapeutics, vol.93, issue.4, pp.416-417, 2014.
DOI : 10.1038/clpt.2014.123

B. J. Druker, M. Talpaz, D. J. Resta, B. Peng, E. Buchdunger et al., Efficacy and Safety of a Specific Inhibitor of the BCR-ABL Tyrosine Kinase in Chronic Myeloid Leukemia, New England Journal of Medicine, vol.344, issue.14, pp.344-1031, 2001.
DOI : 10.1056/NEJM200104053441401

T. Haferlach, Molecular genetic pathways as therapeutic targets in AML, pp.400-411, 2008.
DOI : 10.1182/asheducation-2008.1.400

R. H. Chisholm, T. Lorenzi, and J. Clairambault, Cell population heterogeneity and evolution towards drug resistance in cancer: Biological and mathematical assessment, theoretical treatment optimisation, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1860, issue.11, pp.1860-2627, 2016.
DOI : 10.1016/j.bbagen.2016.06.009

URL : https://hal.archives-ouvertes.fr/hal-01321535

B. Brutovsky and D. Horvath, Structure of intratumor heterogeneity: Is cancer hedging its bets?, 2013.

R. H. Chisholm, T. Lorenzi, A. Lorz, A. K. Larsen, L. N. Almeida et al., Emergence of Drug Tolerance in Cancer Cell Populations: An Evolutionary Outcome of Selection, Nongenetic Instability, and Stress-Induced Adaptation, Cancer Research, vol.75, issue.6, pp.75-930, 2015.
DOI : 10.1158/0008-5472.CAN-14-2103

URL : https://hal.archives-ouvertes.fr/hal-01237893

A. Wu, Q. Zhang, G. Lambert, Z. Khin, R. A. Gatenby et al., Ancient hot and cold genes and chemotherapy resistance emergence, Proc. Nat. Acad. Sci. USA, pp.10467-10472, 2015.
DOI : 10.1073/pnas.1512396112

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547268