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What Makes a Distributed Problem Truly Local?*

Adrian Kosowski

Inria Paris and IRIF, Université Paris Diderot, France

Abstract

In this talk we attempt to identify the characteristics of a task of dis-
tributed network computing, which make it easy (or hard) to solve by
means of fast local algorithms. We look at specific combinatorial tasks
within the LOCAL model of distributed computation, and rephrase some
recent algorithmic results in a framework of constraint satisfaction. Fi-
nally, we discuss the issue of efficient computability for relaxed variants
of the LOCAL model, involving the so-called non-signaling property.

In distributed network computing, autonomous computational entities are
represented by the nodes of an undirected system graph, and exchange informa-
tion by sending messages along its edges. A major line of research in this area
concerns the notion of locality, and asks how much information about its neigh-
borhood a node needs to collect in order to solve a given computational task.
In particular, in the seminal LOCAL model [19], the complexity of a distributed
algorithm is measured in term of number of rounds, where in each round all
nodes synchronously exchange data along network links, and subsequently per-
form individual computations. A t¢-round algorithm is thus one in which every
node exchanges data with nodes at distance at most ¢ (i.e., at most ¢ hops away)
from it.

Arguably, the most important class of local computational tasks concerns
symmetry breaking, and several forms of such tasks have been considered, in-
cluding the construction of proper graph colorings [3H9, 1115, 17,18, 22], of
mazimal independent sets (MIS) [1,[41[5L[14,[T6L18], as well as edge-based vari-
ants of these problems (cf. e.g. [2I]). In this talk we address the following
question: What makes some symmetry-breaking problems in the LOCAL model
easier than others?

We note that the LOCAL model has two flavors, involving the design of de-
terministic and randomized algorithms, which are clearly distinct [8]. When
considering randomized algorithms, for n-node graphs of maximum degree A, a
hardness separation between the randomized complexities of the specific prob-
lems of MIS and (A + 1)-coloring has recently been observed [IT,[14]. No anal-
ogous separation is as yet known when considering deterministic solutions to
these problems. We look at some partial evidence in this direction, making
use of the recently introduced framework of conflict coloring representations [9]
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for local combinatorial problems. A conflict coloring representation captures
a distributed task through a set of local constraints on edges of the system
graph, thus constituting a special case of the much broader class of constraint
satisfaction problems (CSP) with binary constraints. Whereas all local tasks
are amenable to a conflict coloring formulation, one may introduce a natural
constraint density parameter, which turns out to be inherently smaller for some
problems than for others. For example, for the natural representation of the
(A +1)-coloring task, the constraint density is 1/(A+ 1), while for any accurate
representation of MIS, the constraint density is at least 1/2. We discuss impli-
cations of how low constraint density (notably, much smaller than 1/A) may be
helpful when finding solutions to a distributed task, especially when applying
the so-called shattering method [20] in a randomized setting, and more directly,
when designing faster deterministic algorithms through a direct attack on the
conflict coloring representation of the task [9].

We close this talk with a discussion of relaxed variants of the LOCAL model,
inspired by the physical concept of non-signaling. In a computational frame-
work, the non-signaling property can be stated as the following necessary (but
not sufficient) property of the LOCAL model: for any ¢ > 0, given two subsets
of nodes S; and Ss of the system graph, such that the distance between the
nearest nodes of S and Ss is greater than ¢, in any ¢-round LOCAL algorithm,
the outputs of nodes from S; must be (probabilistically) independent of the
inputs of nodes from S5. We point out that for a number of symmetry breaking
tasks in the LOCAL model, the currently best known asymptotic lower bounds
can be deduced solely by exploiting the non-signaling property. This is the case
for problems such as MIS [I0,[14] or 2-coloring of the ring [I0]. On the other
hand, such an implication is not true for, e.g., the Q(log™ n) lower bound on the
number of rounds required to 3-color the ring [I5] — this lower bound follows
from different (stronger) properties of the LOCAL model [I21[I3]. This leads us
to look at the converse question: How to identify conditions under which non-
signaling solutions to a distributed task can be converted into an algorithm in
the LOCAL model? We note some progress in this respect for quantum analogues
of the LOCAL model [2].

References

[1] N. Alon, L. Babai, and A. Ttai. A fast and simple randomized parallel algo-
rithm for the maximal independent set problem. J. Algorithms 7(4):567-583
(1986)

[2] P. Arrighi, V. Nesme, and R.F. Werner. Unitarity plus causality implies
localizability. J. Comput. Syst. Sci. 77(2):372-378 (2011)

[3] L. Barenboim. Deterministic (A + 1)-coloring in sublinear (in A) Time
in Static, Dynamic and Faulty Networks. In Proc. 8/th ACM Symp. on
Principles of Distributed Computing (PODC), pp. 345-354, 2015.

[4] L. Barenboim and M. Elkin. Distributed (A + 1)-coloring in linear (in
A) time. In Proc. 41th ACM Symp. on Theory of Computing (STOC),
pp. 111-120, 2009.



[5]

[16]

[17]

[18]

[19]

L. Barenboim and M. Elkin. Distributed Graph Coloring: Fundamentals
and Recent Developments. Synthesis Lectures on Distributed Computing
Theory, Morgan & Claypool Publishers, 2013.

L. Barenboim, M. Elkin, and F. Kuhn. Distributed (A + 1)-coloring in
linear (in A) time. STAM J. Comput. 43(1):72-95 (2014)

L. Barenboim, M. Elkin, S. Pettie, and J. Schneider. The locality of dis-
tributed symmetry breaking. In Proc. 53rd IEEE Symp. on Foundations
of Computer Science (FOCS), pp. 321-330, 2012.

Y-J. Chang, T. Kopelowitz, and S. Pettie. An Exponential Separation
Between Randomized and Deterministic Complexity in the LOCAL Model,
In Proc. 57th IEEE Symp. on Foundations of Computer Science (FOCS),
to appear, 2016, http://arxiv.org/abs/1602.08166.

P. Fraigniaud, M. Heinrich, and A. Kosowski. Local Conflict Coloring, In
Proc. 57th IEEE Symp. on Foundations of Computer Science (FOCS), to
appear, 2016, http://arxiv.org/abs/1511.01287.

C. Gavoille, A. Kosowski, and M. Markiewicz. What Can Be Observed
Locally? In Proc. 23rd International Symposium on Distributed Computing
(DISC), pp. 243-257, 20009.

D.G. Harris, J. Schneider, and H-H. Su. Distributed (A + 1)-Coloring in
Sublogarithmic Rounds, In Proc. 48th Annual Symposium on the Theory
of Computing (STOC), pp. 465-478, 2016.

A.E. Holroyd and T.M. Liggett. Finitely dependent coloring. Submitted
preprint: http://arxiv.org/abs/1403.2448.

A.E. Holroyd and T.M. Liggett. Symmetric 1-dependent colorings of the
integers. FElectron. Commun. Probab. 20(31) (2015).

F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed
locally! In Proc. 23rd ACM Symp. on Principles of Distributed Computing
(PODC), pp. 300-309, 2004.

N. Linial. Locality in Distributed Graph Algorithms. SIAM J. Comput.
21(1): 193-201 (1992)

M. Luby. A simple parallel algorithm for the maximal independent set
problem. SIAM J. on Computing 15:1036-1053 (1986)

M. Naor. A lower bound on probabilistic algorithms for distributive ring
coloring. SIAM J. on Discrete Mathematics 4(3):409-412 (1991)

A. Panconesi and A. Srinivasan. Improved Distributed Algorithms for Col-
oring and Network Decomposition Problems. In Proc. 24th ACM Symp.
on Theory of Computing (STOC), pp. 581-592, 1992.

D. Peleg. Distributed Computing: A Locality-Sensitive Approach. STAM,
Philadelphia, PA; 2000.


http://arxiv.org/abs/1602.08166
http://arxiv.org/abs/1511.01287
http://arxiv.org/abs/1403.2448

[20] J. Schneider, R. Wattenhofer. A new technique for distributed symmetry
breaking. In Proc. 29th ACM Symp. on Principles of Distributed Computing
(PODC), pp. 257-266, 2010.

[21] J. Suomela. Survey of local algorithms. ACM Comput. Surv. 45(2):24
(2013)

[22] M. Szegedy and S. Vishwanathan: Locality based graph coloring. In Proc.
25th ACM Symp. on Theory of Computing (STOC), pp. 201-207, 1993.



