S. Doclo, A. Spriet, J. Wouters, and M. Moonen, Frequency-domain criterion for the speech distortion weighted multichannel Wiener filter for robust noise reduction, Speech Communication, vol.49, issue.7-8, pp.636-656, 2007.
DOI : 10.1016/j.specom.2007.02.001

URL : https://hal.archives-ouvertes.fr/hal-00499178

A. Spriet, M. Moonen, and J. Wouters, Spatially pre-processed speech distortion weighted multi-channel Wiener filtering for noise reduction, Signal Processing, vol.84, issue.12, pp.2367-2387, 2004.
DOI : 10.1016/j.sigpro.2004.07.028

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Van-veen and K. Buckley, Beamforming: a versatile approach to spatial filtering, IEEE ASSP Magazine, vol.5, issue.2, pp.4-24, 1988.
DOI : 10.1109/53.665

M. Kim and P. Smaragdis, Mixtures of Local Dictionaries for Unsupervised Speech Enhancement, IEEE Signal Processing Letters, vol.22, issue.3, pp.293-297, 2015.
DOI : 10.1109/LSP.2014.2346506

M. Schmidt, J. Larsen, and F. Hsiao, Wind Noise Reduction using Non-Negative Sparse Coding, 2007 IEEE Workshop on Machine Learning for Signal Processing, pp.431-436, 2007.
DOI : 10.1109/MLSP.2007.4414345

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Ozerov and C. Fevotte, Multichannel nonnegative matrix factorization in convolutive mixtures. With application to blind audio source separation, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.3137-3140, 2009.
DOI : 10.1109/ICASSP.2009.4960289

H. Sawada, H. Kameoka, S. Araki, and N. Ueda, Multichannel Extensions of Non-Negative Matrix Factorization With Complex-Valued Data, IEEE Transactions on Audio, Speech, and Language Processing, vol.21, issue.5, pp.971-982, 2013.
DOI : 10.1109/TASL.2013.2239990

A. Ito, T. Kanayama, M. Suzuki, and S. Makino, Internal noise suppression for speech recognition by small robots, Proc. of European Conf. on Speech Communication and Technology (INTERSPEECH - Eurospeech), pp.2685-2688, 2005.

G. Ince, K. Nakadai, T. Rodemann, Y. Hasegawa, H. Tsujino et al., Ego noise suppression of a robot using template subtraction, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.199-204, 2009.
DOI : 10.1109/IROS.2009.5354651

A. Deleforge and W. Kellermann, Phase-optimized K-SVD for signal extraction from underdetermined multichannel sparse mixtures, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.355-359, 2015.
DOI : 10.1109/ICASSP.2015.7177990

URL : http://arxiv.org/abs/1410.2430

G. Davis, S. Mallat, and M. Avellaneda, Adaptive greedy approximations Constructive approximation, pp.57-98, 1997.
DOI : 10.1007/bf02678430

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Schölkopf, J. Platt, J. Shawe-taylor, A. Smola, and R. Williamson, Estimating the Support of a High-Dimensional Distribution, Neural Computation, vol.6, issue.1, pp.1443-1471, 2001.
DOI : 10.1214/aos/1069362732

M. Aharon, M. Elad, and A. Bruckstein, <tex>$rm K$</tex>-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation, IEEE Transactions on Signal Processing, vol.54, issue.11, pp.4311-4322, 2006.
DOI : 10.1109/TSP.2006.881199

J. A. Tropp, Greed is Good: Algorithmic Results for Sparse Approximation, IEEE Transactions on Information Theory, vol.50, issue.10, pp.2231-2242, 2004.
DOI : 10.1109/TIT.2004.834793

URL : http://authors.library.caltech.edu/9035/1/TROieeetit04a.pdf

T. Cai and L. Wang, Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise, IEEE Transactions on Information Theory, vol.57, issue.7, pp.4680-4688, 2011.
DOI : 10.1109/TIT.2011.2146090

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. Pati, R. Rezaiifar, and P. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, pp.40-44, 1993.
DOI : 10.1109/ACSSC.1993.342465

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Cristianini and J. Shawe-taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, 2003.
DOI : 10.1017/CBO9780511801389

V. Vapnik, The Nature of Statistical Learning Theory, 2013.

A. Robotics, . Soft-bank, and . Group, Who is NAO, " https:// www.aldebaran.com/en/humanoid-robot/nao-robot, 2015.

M. Cooke, J. Barker, S. Cunningham, and X. Shao, An audio-visual corpus for speech perception and automatic speech recognition, The Journal of the Acoustical Society of America, vol.120, issue.5, pp.2421-2424, 2006.
DOI : 10.1121/1.2229005

C. Févotte, R. Gribonval, and E. Vincent, BSS eval toolbox user guide, IRISA, 2005.

D. Huggins-daines, M. Kumar, A. Chan, A. Black, M. Ravishankar et al., Pocketsphinx: A Free, Real-Time Continuous Speech Recognition System for Hand-Held Devices, 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings, pp.185-188, 2006.
DOI : 10.1109/ICASSP.2006.1659988

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. Vincent, J. Barker, S. Watanabe, J. Le-roux, F. Nesta et al., The second &#x2018;CHiME&#x2019; speech separation and recognition challenge: An overview of challenge systems and outcomes, 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, pp.162-167, 2013.
DOI : 10.1109/ASRU.2013.6707723

Y. Li and A. Ngom, Versatile Sparse Matrix Factorization and Its Applications in High-Dimensional Biological Data Analysis, Pattern Recognition in Bioinformatics, pp.91-101, 2013.
DOI : 10.1007/978-3-642-39159-0_9