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ABSTRACT

DNN based acoustic models require a large amount of train-
ing data. Parametric data augmentation techniques such as
adding noise, reverberation, or changing the speech rate, are
often employed to boost the dataset size and the ASR perfor-
mance. The choice of augmentation techniques and the asso-
ciated parameters has been handled heuristically so far. In this
work we propose an algorithm to automatically weight data
perturbed using a variety of augmentation techniques and/or
parameters. The weights are learned in a discriminative fash-
ion so as to minimize the frame error rate using the standard
gradient descent algorithm in an iterative manner. Experi-
ments were performed using the CHiME-3 dataset. Data aug-
mentation was done by adding noise at different SNRs. A rel-
ative WER improvement of 15% was obtained with the pro-
posed data weighting algorithm compared to the unweighted
augmented dataset. Interestingly, the resulting distribution of
SNRs in the weighted training set differs significantly from
that of the test set.

Index Terms— ASR, data augmentation, feature simula-
tion, DNN, CHiME.

1. INTRODUCTION

State of the art automatic speech recognition (ASR) systems
are built using deep neural network (DNN) based acoustic
models [1], which require large amounts of labeled training
data. Obtaining this data is time-consuming and expensive.
Furthermore, ensuring good performance across all acoustic
conditions requires data capture across varied acoustic condi-
tions which is practically unfeasible.

To address these issues, parametric data augmentation
techniques are often employed to increase the amount and
variety of data without incurring any extra labeling cost. Gen-
eral techniques include perturbing the vocal tract length [2],
converting one speaker’s data to another speaker’s [2], and
varying the speed or intensity [3, 4]. These techniques have
shown benefit for both under-resourced languages [5] and
large-scale ASR tasks [6]. A complementary way of widen-
ing the range of acoustic conditions is to simulate additional

data by convolving clean speech with real or simulated acous-
tic impulse responses with various reverberation times (RTs)
and direct-to-reverberant ratios (DRRs) [7] and adding sep-
arately recorded background noise at various signal-to-noise
ratios (SNRs) [6]. This greatly increases robustness in distant-
microphone conditions, as shown by the REVERB [8], AS-
PIRE [9], and CHiME [10, 11] challenges. Data augmenta-
tion has also been employed in other areas such as speech
enhancement [12] and sound event detection [13, 14].

Not all augmented data is useful. For example, certain
augmentation techniques were found to degrade the classifi-
cation accuracy in [13]. The augmentation techniques and
the corresponding parameters (e.g., vocal tract length factor,
speed factor, SNR, RT, DRR) must be carefully chosen in or-
der to improve performance. So far, this choice has been han-
dled by trial and error. Considering this problem in a rigorous
optimization framework, we raise the following fundamental
question: “What is the optimal training set given the task, the
classifier, and the test conditions?”

The literature on transfer learning provides a set of meth-
ods to answer this question, based on the assumption that the
distribution of the training and test data must match [15–20].
The method in [16] operates by weighting each training sam-
ple x by the importance weight ptest(x)

ptrain(x)
, defined as the ratio of

densities in the test and training domains. Several techniques
have been proposed to estimate the density ratio [21,22]. The-
oretical guarantees have been established only when the first
moment of the ratio is bounded [23], which is arguably a
strong restriction. More critically, there is increasing evidence
that mismatched training data can outperform matched data.
The first formal proof of this somewhat surprising result was
published in [24]. In the field of robust ASR, it was found
that, when testing on single-channel enhanced data, training
on multichannel enhanced data [25], multichannel noisy data
[26, 27], or both [4, 28] improves the WER despite the in-
creased mismatch. Simulating additional data with a lower
SNR than the test data can also be beneficial [29]. Even more
surprisingly, not including the test condition in the training
set sometimes improves the WER [11].

These results show that there is a need for a discrimina-
tive transfer learning method that maximizes performance for



the considered task, classifier, and test conditions. Such a
method was proposed in [30] for kernel logistic regression.
In this paper, we propose a discriminative importance weight-
ing algorithm that is applicable to DNNs and use it to weight
augmented training data for robust acoustic modeling. To do
so, we assume the availability of a labeled development set
with similar distribution as the test domain. We validate our
approach on the CHiME-3 dataset.

The rest of the paper is organized as follows. Section 2
defines the problem and proposes an algorithm to automat-
ically learn the importance weights. Section 3 explains the
experimental setup and the results are discussed in Section 4.
Section 5 concludes the paper.

2. LEARNING DATA WEIGHTS

We assume the availability of two datasets: a large augmented
training set which has been generated by applying all possibly
relevant data augmentation techniques and/or parameters, and
a smaller development set which is distributed similarly to the
(unknown) test data. We denote by ptrain(x) and pdev(x) the
distribution of the feature vectors x in the training and devel-
opment sets, respectively. Note that the two datasets are fixed:
no data are added or removed by the proposed algorithm.

Classically, a DNN acoustic model with weight and bias
parameters θ is trained to estimate the posterior pθ(y|x) over
the labels (senones) y given the input features x. The param-
eters θ are updated by stochastic gradient descent (SGD) so
as to minimize the loss L in the training set:

θ̂ = arg min
θ
Eptrain(x)p(y|x)[L(pθ(y|x), y)]. (1)

Using the cross-entropy as the loss function, the estimated
loss for a batch of size N is defined as

E
[
L(pθ(y|x), y)

]
= − 1

N

N∑
i=1

log pθ(yi|xi). (2)

2.1. Formulation as an optimization problem

Instead of using the training set as such, we propose to weight
each training sample i by an importance weight ωi ≥ 0. We
incorporate these data weights as part of the loss function as

E
[
Lω(pθ(y|x), y, ω)] = −

∑N
i=1 ωi log pθ(yi|xi)∑N

i=1 ωi
. (3)

For a given set of data weights, we can train a corresponding
DNN acoustic model that minimizes the weighted loss:

θ̂ = arg min
θ
Eptrain(x)p(y|x)

[
Lω(pθ(y|x), y, ω)

]
(4)

The classification error E achieved by this DNN on the devel-
opment set can then be computed as

E(pθ̂(y|x), y) =

{
0 if arg maxz pθ̂(z|x) = y

1 otherwise.
(5)

The problem of optimizing the training set for the task, the
classifier, and the test conditions translates into finding the
data weights ω̂ for which the corresponding DNN acoustic
model θ̂ yields minimum error rate on the development set:

ω̂ = arg min
ω
Epdev(x)p(y|x)

[
E(pθ̂(y|x), y)

]
. (6)

2.2. Algorithm

We optimize (4) and (6) iteratively as follows. Each iteration
consists of two steps. In the first step, given the data weights
ω, the DNN parameters θ are updated via one epoch of SGD
on the full training set. The gradient of the weighted loss is
computed by backpropagation and multiplied by ωi/

∑N
i=1 ωi

for each sample xi. In the second step, given the DNN pa-
rameters θ, the data weights ω are updated using one step of
gradient descent. The gradient of the classification error with
respect to each data weight ωi can be computed by updating
the DNN via one step of SGD on a single sample xi and com-
puting the difference ∆ei between the classification errors on
the development set before and after this update. The weights
are then updated as ωi = ωi − λ∆ei with a suitable learning
rate λ. The algorithm is summarized in Algorithm 1.

Input: Training set Strain, development set Sdev ,
initial DNN θinit, weight learning rate λ

Output: Trained DNN with parameters θ̂best
ωi ← 1, ∀i;
θ̂best ← θinit;
ê← Epdev(x)p(y|x)[E(pθ̂(y|x), y)];
e← ê;
repeat

for i in Strain do
θ̂i ← arg minθ L(pθ(yi|xi), yi);
(1 epoch starting from θ̂best)
ei ← Epdev(x)p(y|x)[E(pθ̂i(y|x), y)];

end
while e ≥ ê do

for i in Strain do
∆ei ← ei − e;
ωi ← ωi − λ∆ei;

end
θ̂ ←
arg minθ Eptrain(x)p(y|x)

[
Lω(pθ(y|x), y, ω)

]
;

(1 epoch starting from θ̂best)
e← Epdev(x)p(y|x)[E(pθ̂(y|x), y)];

end
θ̂best ← θ̂;
ê← e;

until error e doesn’t decrease for several iterations;
Algorithm 1: Algorithm to learn the data weights.

In practice, learning a separate weight for every sample
is undesirable, as this would result in severe overfitting. To



avoid this, the dimensionality of the weight vector ω must
be reduced in some way. In the following, we propose to
learn a single, shared weight ωi for every subset of samples
generated using the same data augmentation parameters. At
every iteration, θ̂i is computed and this weight is updated once
for all samples in this subset by running one epoch of SGD
over that subset.

3. EXPERIMENTAL SET UP

3.1. Data

We conducted experiments on the CHiME-3 dataset [31]. For
simplicity, only the simulated training set containing 7138 ut-
terances by 83 speakers was used. The real training set was
not included1. Simulation was carried out by using clean Wall
Street Journal (WSJ0) utterances and adding real noise back-
grounds recorded in four environments: Bus, Cafe, Pedes-
trian area, and Street. Besides the original simulated training
set provided by the challenge organizers, we generated 6 sim-
ulated training sets by decreasing or increasing the SNR by
−15, −10, −5, +5, +10, or +15 dB for each of the 7138
utterances. We refer to the complete simulated training set of
7138× 7 = 49966 utterances as the composite dataset.

The development set contains 1640 real and 1640 simu-
lated utterances by 4 speakers. Evaluation is performed on
the real test set, which contains 1320 utterances spoken live
in real environments by 4 speakers. The noises types and the
SNRs are similar across all datasets. No speech enhancement
is applied on either training, development, or test data.

3.2. Algorithm settings

A GMM-HMM trained on clean WSJ0 speech was used to
align the training data. The resulting alignments form the
target labels (senones) for DNN training. A GMM-HMM
trained on enhanced speech (using the speech enhancement
baseline provided by the challenge organizers) was used to
align for the development data. The resulting alignments were
used to compute the classification error.

Feature-space maximum likelihood linear regression (fM-
LLR) features [32] were used. They were obtained by com-
puting 13-dimensional Mel frequency cepstral coefficients
(MFCCs) using a 25 ms window and 10 ms shift. The MFCCs
were spliced with 3 left and 3 right context frames and decor-
related by linear discriminant analysis (LDA) [33] followed
by maximum likelihood linear transform (MLLT) [34]. The
transformed features were speaker normalized to obtain 40-
dimensional fMLLR features, which were concatenated with
5 left and 5 right context frames to form 440 dimensional
vectors given as inputs to the acoustic model.

A DNN with 7 hidden layers, 2048 sigmoid units per
layer, and 1981 senone outputs was used as the acoustic

1It was shown in [29] that not including the real training set, which is
much smaller than the simulated set, has a minor impact on the WER.

model. Pretraining was performed using restricted Boltz-
mann machines (RBM) followed by one epoch of training.
The learning rate for SGD was initially set to 0.08 and adapted
as the training progressed. The minibatch size was 256.

The proposed data weighting algorithm was applied to the
composite dataset. We learned a single weight for all samples
generated using the same SNR decrease/increase value. In
other words, we learned 7 weights: one for the original train-
ing set and one for each of the 6 generated datasets. The data
weight learning rate λ was set to 0.8. The Kaldi and Theano
toolkits were used to perform these experiments.

4. RESULTS AND DISCUSSION

4.1. Baselines

To start off with, an experiment was conducted using the com-
posite dataset without weighting. A decrease in the frame er-
ror rate (FER) on the development set was observed for the
first three epochs. For further epochs, even though a decrease
in the training cost was observed, an increase in the FER in
the development set was seen, thereby indicating overfitting
(blue curve in Fig. 1). The model with best performance on
the development set was used to perform ASR on the test set.
A word error rate (WER) of 26.59% was observed. For com-
parison, we trained the acoustic model on the original simu-
lated training dataset of 7138 utterances and obtained a WER
of 29.05%. This suggest that the raw data augmentation im-
proved the relative ASR performance by 8.5%.

4.2. WER achieved by the proposed algorithm

We then applied the proposed weight learning algorithm on
the composite dataset. The FER performance for this algo-
rithm is shown using a black curve in Fig. 1. Using real data
only for development, we obtained a WER of 22.68% on the
test set, that is a relative WER improvement of 14.7% and
21.9% with respect to the unweighted composite dataset and
the original training set, respectively.

Table 1 presents detailed results for the various environ-
ments and using either real and simulated data or real data
alone as the development set. Since the test set contains only
real utterances, the distribution of the test data is expected
to be more similar to real-only development data. The rela-
tive WER improvement of 0.5% obtained using real-only de-
velopment data as compared to simulated+real development
data supports this fact. Another interesting observation is that
the relative WER improvement achieved by the proposed al-
gorithm (with respect to the unweighted composite dataset)
is similar across all noise environments when using real-only
development data.



Table 1: ASR WER comparison using acoustic model trained on different train and development datasets with and without
applying the weighting algorithm. Composite dataset refers to the data with {-15,-10, -5, 0, +5, +10, +15} dB. Testing was
done using the real part of the CHiME-3 test dataset.

Dataset Weighting Type of
dev dataset

# Train
utterances

WER (%)
BUS CAF PED STR Avg.

Original No Simu + Real 7138 50.08 27.27 20.37 18.51 29.05
Composite No Simu + Real 49966 36.85 26.84 20.80 15.22 24.92
Composite Yes Simu + Real 49966 34.23 23.53 19.64 13.82 22.80
Composite No Real 49966 37.37 30.11 23.22 15.65 26.59
Composite Yes Real 49966 32.60 24.15 19.86 14.10 22.68
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Fig. 1: FER on the development set achieved by weighted vs.
unweighted training using simulated+real development data.
The FER equals 0.999 for both systems at iteration 1.

4.3. Learned data weights

Fig. 2 shows the evolution of the data weights per iteration.
The weights for the -10, -5 and -15 dB datasets drop signifi-
cantly below their initial value, while the weight for the +5 dB
dataset increases significantly above its initial value. After 12
iterations, the distribution of the weighted training data is very
different from that of the original training data (and from the
development and test data) and it focuses on higher SNRs.
This further supports the claim that mismatched training data
can outperform matched data and that algorithms seeking to
select matched training data [15–20] can only achieve lim-
ited success. Our algorithm was able to find a “suitably mis-
matched” distribution of SNRs, a result that would arguably
have been hard or impossible to achieve by simple trial and
error. Yet, its computational cost is only twice that of training
on the unweighted composite dataset.

5. CONCLUSION

In this work we proposed an algorithm to optimize the train-
ing set for a DNN acoustic model given a development set that
is representative of the test conditions. Our algorithm learns
importance weights for disjoint subsets of data in the train-
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Fig. 2: Data weights learned using simulated+real develop-
ment data. The sum of the weights is normalized to 1.

ing set. The learned weights represent the importance of the
data samples in each of the subsets towards minimizing the
FER in the development set. Experiments were performed on
the CHiME-3 dataset by simulating noisy speech with various
SNRs. The results show a WER improvement of 15% relative
compared to training from the unweighted dataset.

There are two future directions which we believe require
further investigation. The first one is to perform a larger-scale
experimental evaluation using not only noisy simulated data,
but a combination of clean, enhanced, and noisy data and real
and simulated data. The second one to investigate if learn-
ing weights for random subsets of data (instead of SNR spe-
cific subsets in this work) yields any realistic improvements
in ASR performance. This is particularly helpful when large
amount of data are available for training with no predefined
demarcation information (such as SNR).

6. ACKNOWLEDGMENTS

We acknowledge the support of Bpifrance (FUI voiceHome).
Experiments presented in this paper were carried out us-
ing the Grid’5000 testbed, supported by a scientific inter-
est group hosted by Inria and including CNRS, RENATER
and several universities as well as other organizations (see
https://www.grid5000.fr).



7. REFERENCES

[1] G. Hinton, L. Deng, D. Yu, A.-R. Mohamed, N. Jaitly, et al.,
“Deep neural networks for acoustic modeling in speech recog-
nition: The shared views of four research groups,” IEEE Signal
Processing Magazine, vol. 29, no. 6, pp. 82–97, Nov. 2012.

[2] X. Cui, V. Goel, and B. Kingsbury, “Data augmentation for
deep neural network acoustic modeling,” IEEE/ACM Transac-
tions on Audio, Speech and Language Processing, vol. 23, no.
9, pp. 1469–1477, Sept. 2015.

[3] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural
network architecture for efficient modeling of long temporal
contexts,” in Proc. Interspeech, 2015, pp. 2440–2444.

[4] T. Schrank, L. Pfeifenberger, M. Zöhrer, J. Stahl, P. Mowlaee,
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