Inferring sparsity: Compressed sensing using generalized restricted Boltzmann machines

Eric Tramel 1 Andre Manoel 1 Francesco Caltagirone 2 Marylou Gabrié 1 Florent Krzakala 1
2 DYOGENE - Dynamics of Geometric Networks
DI-ENS - Département d'informatique de l'École normale supérieure, ENS Paris - École normale supérieure - Paris, CNRS - Centre National de la Recherche Scientifique : UMR 8548, Inria de Paris
Abstract : In this work, we consider compressed sensing reconstruction from M measurements of K-sparse structured signals which do not possess a writable correlation model. Assuming that a generative statistical model, such as a Boltzmann machine, can be trained in an unsupervised manner on example signals, we demonstrate how this signal model can be used within a Bayesian framework of signal reconstruction. By deriving a message-passing inference for general distribution restricted Boltzmann machines, we are able to integrate these inferred signal models into approximate message passing for compressed sensing reconstruction. Finally, we show for the MNIST dataset that this approach can be very effective, even for M < K.
Type de document :
Communication dans un congrès
Information Theory Workshop (ITW), 2016 IEEE, Sep 2016, Cambridge, United Kingdom. Information Theory Workshop (ITW), 2016 IEEE, pp.265 - 269, 2016, 〈10.1109/ITW.2016.7606837〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01416262
Contributeur : Francesco Caltagirone <>
Soumis le : mercredi 14 décembre 2016 - 11:54:05
Dernière modification le : jeudi 11 janvier 2018 - 06:28:02
Document(s) archivé(s) le : mercredi 15 mars 2017 - 13:38:30

Fichier

1606.03956 (1).pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

UPMC | INRIA | PSL | USPC | LPS

Citation

Eric Tramel, Andre Manoel, Francesco Caltagirone, Marylou Gabrié, Florent Krzakala. Inferring sparsity: Compressed sensing using generalized restricted Boltzmann machines. Information Theory Workshop (ITW), 2016 IEEE, Sep 2016, Cambridge, United Kingdom. Information Theory Workshop (ITW), 2016 IEEE, pp.265 - 269, 2016, 〈10.1109/ITW.2016.7606837〉. 〈hal-01416262〉

Partager

Métriques

Consultations de la notice

123

Téléchargements de fichiers

39