J. Yang, J. Wright, T. S. Huang, and Y. Ma, Image super-resolution via sparse representation, IEEE TIP, vol.19, issue.11, pp.2861-2873, 2010.

S. Wang, L. Zhang, Y. Liang, and Q. Pan, Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis, CVPR, 2012.

D. Huang and Y. F. Wang, Coupled Dictionary and Feature Space Learning with Applications to Cross-Domain Image Synthesis and Recognition, 2013 IEEE International Conference on Computer Vision, 2013.
DOI : 10.1109/ICCV.2013.310

M. P. Kumar, B. Packer, and D. Koller, Self-paced learning for latent variable models, NIPS, 2010.

L. Jiang, D. Meng, T. Mitamura, and A. G. Hauptmann, Easy Samples First, Proceedings of the ACM International Conference on Multimedia, MM '14, 2014.
DOI : 10.1145/2647868.2654918

Y. Bengio, J. Louradour, R. Collobert, and J. Weston, Curriculum learning, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, 2009.
DOI : 10.1145/1553374.1553380

L. Jiang, D. Meng, Q. Zhao, S. Shan, and A. G. Hauptmann, Self-paced curriculum learning, AAAI, 2015.

M. Aharon, M. Elad, and A. Bruckstein, <tex>$rm K$</tex>-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation, IEEE Transactions on Signal Processing, vol.54, issue.11, pp.4311-4322, 2006.
DOI : 10.1109/TSP.2006.881199

J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online dictionary learning for sparse coding, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, 2009.
DOI : 10.1145/1553374.1553463

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Lee, A. Battle, R. Raina, and A. Y. Ng, Efficient sparse coding algorithms, NIPS, 2006.

G. Liu, Y. Yan, E. Ricci, Y. Yang, Y. Han et al., Inferring painting style with multi-task dictionary learning, IJCAI, 2015.

Z. Ding, S. Ming, and Y. Fu, Latent low-rank transfer subspace learning for missing modality recognition, AAAI, 2014.

J. Ni, Q. Qiu, and R. Chellappa, Subspace Interpolation via Dictionary Learning for Unsupervised Domain Adaptation, 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013.
DOI : 10.1109/CVPR.2013.95

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Q. Zhao, D. Meng, L. Jiang, Q. Xie, Z. Xu et al., Self-paced learning for matrix factorization, AAAI, 2015.

K. Tang, V. Ramanathan, L. Fei-fei, and D. Koller, Shifting weights: Adapting object detectors from image to video, NIPS, 2012.

Y. Tang, Y. Yang, and Y. Gao, Self-paced dictionary learning for image classification, Proceedings of the 20th ACM international conference on Multimedia, MM '12, 2012.
DOI : 10.1145/2393347.2396324

C. Xu, D. Tao, and C. Xu, Multi-view self-paced learning for clustering, IJCAI, 2015.

M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang et al., Graph regularized sparse coding for image representation, IEEE TIP, vol.20, issue.5, pp.1327-1336, 2011.

J. Song, Y. Yang, Z. Huang, H. T. Shen, and R. Hong, Multiple feature hashing for real-time large scale near-duplicate video retrieval, Proceedings of the 19th ACM international conference on Multimedia, MM '11, 2011.
DOI : 10.1145/2072298.2072354

L. Jiang, D. Meng, S. Yu, Z. Lan, S. Shan et al., Selfpaced learning with diversity, NIPS, 2014.

C. J. Albers, F. Critchley, and J. C. Gower, Quadratic minimisation problems in statistics, Journal of Multivariate Analysis, vol.102, issue.3, pp.698-713, 2011.
DOI : 10.1016/j.jmva.2009.12.018

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Beck and M. Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, SIAM Journal on Imaging Sciences, vol.2, issue.1, pp.183-202, 2009.
DOI : 10.1137/080716542

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Rasiwasia, J. C. Pereira, E. Coviello, G. Doyle, G. R. Lanckriet et al., A new approach to cross-modal multimedia retrieval, Proceedings of the international conference on Multimedia, MM '10, 2010.
DOI : 10.1145/1873951.1873987

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Li, N. Dimitrova, M. Li, and I. K. Sethi, Multimedia content processing through cross-modal association, Proceedings of the eleventh ACM international conference on Multimedia , MULTIMEDIA '03, 2003.
DOI : 10.1145/957013.957143

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Rosipal and N. Krämer, Overview and Recent Advances in Partial Least Squares, Subspace, latent structure and feature selection, pp.34-51, 2006.
DOI : 10.1002/(SICI)1097-0193(1997)5:4<254::AID-HBM9>3.0.CO;2-2

X. Zhu, Z. Huang, H. T. Shen, and X. Zhao, Linear cross-modal hashing for efficient multimedia search, Proceedings of the 21st ACM international conference on Multimedia, MM '13, 2013.
DOI : 10.1145/2502081.2502107

M. M. Bronstein, A. M. Bronstein, F. Michel, and N. Paragios, Data fusion through cross-modality metric learning using similarity-sensitive hashing, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
DOI : 10.1109/CVPR.2010.5539928

URL : https://hal.archives-ouvertes.fr/hal-00856061

S. Kumar and R. Udupa, Learning hash functions for cross-view similarity search, IJCAI, 2011.

W. Wang, B. C. Ooi, X. Yang, D. Zhang, and Y. Zhuang, Effective multi-modal retrieval based on stacked auto-encoders, Proceedings of the VLDB Endowment, vol.7, issue.8, pp.649-660, 2014.
DOI : 10.14778/2732296.2732301

X. Wang and X. Tang, Face Photo-Sketch Synthesis and Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.11, pp.1955-1967, 2009.
DOI : 10.1109/TPAMI.2008.222

X. Tang and X. Wang, Face Sketch Recognition, IEEE Transactions on Circuits and Systems for Video Technology, vol.14, issue.1, pp.50-57, 2004.
DOI : 10.1109/TCSVT.2003.818353

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Sharma and D. W. Jacobs, Bypassing synthesis: PLS for face recognition with pose, low-resolution and sketch, CVPR 2011, 2011.
DOI : 10.1109/CVPR.2011.5995350

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. B. Tenenbaum and W. T. Freeman, Separating Style and Content with Bilinear Models, Neural Computation, vol.13, issue.6, pp.1247-1283, 2000.
DOI : 10.1016/0167-6393(88)90018-0

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Meng and Q. Zhao, What objective does self-paced learning indeed optimize? " arXiv preprint, 2015.