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Abstract. Our goal in this work is to recover an estimate of an object’s
surface from a single image. We address this severely ill-posed problem
by employing a discriminatively-trained graphical model: we incorporate
prior information about the 3D shape of an object category in terms
of pairwise terms among parts, while using powerful CNN features to
construct unary terms that dictate the part placement in the image.
Our contributions are three-fold: firstly, we extend the Deformable Part
Model (DPM) paradigm to operate in a three-dimensional pose space that
encodes the putative real-world coordinates of object parts. Secondly, we
use branch-and-bound to perform efficient inference with DPMs, resulting
in accelerations by two orders of magnitude over linear-time algorithms.
Thirdly, we use Structured SVM training to properly penalize deviations
between the model predictions and the 3D ground truth information
during learning.
Our inference requires a fraction of a second at test time and our results
outperform those published recently in [17] on the PASCAL 3D+ dataset.

1 Introduction

The advent of deep learning has led to dramatic progress in object detection
[11,12] and also in tasks that can lead to 3D object perception, such as viewpoint
estimation [25]. Even though Convolutional Networks seem to be the method
of choice for such problems, they may not be yet appropriate for structured
prediction tasks that are ‘beyond detection’ and involve multiple, real-valued
and interrelated variables that need to be estimated with high precision. The
scarcity of data for many of these tasks, as well as the rich structure inherent in
the problems advocate a more explicit, modelling-based method.

Our work addresses in particular the problem of estimating the three-dimen-
sional shape of an object from a single RGB image. Apart from the inherent
interest of the problem, this can lead to applications in graphics (rendering,
augmented reality), robotics (grasping, navigation) and object detection (dataset
augmentation, 3D-based classification). This severely ill-posed problem requires
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Fig. 1. Our approach models a three-dimensional object in terms of a graphical model,
where the nodes correspond to 3D part positions and the edges encode geometric
constraints between part positions. Given an input image and a viewpoint estimate the
cost function of our energy model dictates the optimal placement of the parts in three
dimensional space, obtaining a reconstruction of the object’s surface from a monocular
image.

somehow introducing knowledge about the 3D geometry of an object through a
model-based approach.

A model-based approach to solving such a problem typically involves (a) using
multiple images during training to construct a three-dimensional surface model,
and (b) interpreting a single image at test time by adapting the model to it.
It is clear that restricting the surface reconstruction task to a specific category
simplifies the generic surface reconstruction problem [14,1,21], since we now have
a more specific, model-based prior knowledge about the anticipated solution. The
main question is which model is best suited for this task.

Our approach builds on the recent advances of [17] where it was shown that
accurate surface reconstructions can be obtained from RGB images for a wide
variety of categories in the PASCAL VOC dataset. We use the same procedure for
recovering the 3D geometry of categories from 2D datasets, but change entirely
their modelling approach, which leads to different learning and optimization
tasks. The work of [17] was using iterative optimization algorithms that can
get stuck at local minima, while the cost function driving the optimization was
hand-crafted, making it hard to profit from rich features or large datasets. We
propose instead an approach that comes with guarantees of obtaining a globally
optimal solution, and develop an associated Structured SVM training algorithm
that can optimally design the cost function for the task at hand.

For this, we introduce a graphical model inspired from the Deformable Part
Model paradigm [10,8], treating part positions as nodes of a graph and incorporat-
ing geometrical constraints within graph cliques. In particular, we lift Deformable
Part Models [8] to 3D, allowing the object parts to live in a 3D pose space,
reflecting the ‘real-world’ part coordinates. We represent prior information about
the 3D shape of an object category in terms of viewpoint-conditioned pairwise
terms among parts, and use rich CNN features to construct unary terms that
dictate the part placement in the image. In order to make this three-dimensional
model practically exploitable we develop customized optimization and learning
techniques.

Regarding optimization, our method is guaranteed to deliver the optimal
solution when using a loop-free graph, like a star or a tree. Even though inference
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would in principle be possible using generic efficient message-passing algorithms,
such as Generalized Distance Transforms [9], the 3D nature of our task makes
such techniques memory- and time- inefficient: the complexity scales linearly in
the depth resolution, so one would need to trade off accuracy for speed. Instead,
in Sec. 4 we extend Dual-Tree Branch-and-Bound [19] to 3D, keeping the memory
complexity constant and the computational complexity logarithmic in the depth
resolution - this allows us to use a fine-grained depth resolution with negligible
computational overhead.

Regarding learning, we use discriminative training which allows us to design
the cost function so as to place the model predictions as close as possible to
the ground-truth surface. In particular we use Structured SVM training with a
loss function that penalizes the deviation between the estimated 3D position of
the parts and the ground-truth position of the associated object landmarks. We
jointly learn how to score the CNN features that are used for the construction of
our unary terms and the displacement features that are used for our pairwise
terms, while it would be also possible to backpropagate on the CNN that delivers
the CNN features.

We demonstrate the merit of our contributions through systematic compar-
isons on the PASCAL 3D+ dataset, obtaining better results than the current
state-of-the-art method of [17] on most categories.

2 Related Work

There are several problems pertaining to our task, including (i) the acquisition of
3D geometry from RGB images, (ii) the modelling of 3D deformations, and (iii)
the interpretation of a test image in terms of a learned 3D deformation model.
We start by presenting the techniques underlying the current state-of-the-art
method of [17] and then turn to techniques that are closer to our own work.

Regarding (i), several techniques have recently tackled the problem of estab-
lishing 3D geometric models from RGB images [5,16,18], while a closely related
task aims at establishing non-rigid correspondences across unstructured sets of
images [4,29]. We follow the work of [26,17] where a minimal annotation, in terms
of a few landmarks per object instance, is combined with non-rigid structure
from motion algorithms to lift the PASCAL dataset to 3D and estimate surface
models for 10 categories.

Turning to (ii), the modeling of shape variability, the deformable model
paradigm used in [17] relies on a linear, low-dimensional subspace to parameterize
the possible surface variation that a category can have with respect to the mean,
nominal surface. A particular shape instance can thus be expressed in terms of a
low-dimensional coefficient vector.

Turning to (iii), adapting a deformable shape model to a novel image, the
authors of [17] estimate the coefficients of the surface model so that the projection
of the estimated 3D surface on the 2D camera plane is aligned with the object
silhouette, while some designated mesh points project close to two-dimensional
landmark positions; segmentation and landmarks are provided either by humans
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or by external modules [17]. While exploiting several acceleration techniques that
are particular to the cost function being used, the optimization time is in the
order of seconds and the gradient descent procedure used by the authors is prone
to getting stuck in local minima.

Turning to works that rely on DPMs, as we do, several works have recently
aimed at coupling DPMs with three-dimensional modelling, e.g. [22,23,28,30,31].
However, none of the existing works treats the 3D positions of the parts as
variables that are being optimized over. We note that in our case we have M = 100
landmarks in 3D while in most of these works the three-dimensional variable
being optimized corresponds to the relative angle of the camera to the object
[22,23,28,30,31,13] and potentially also the visibility of points [30,28]. Several
works go beyond this and search also over CAD models, typically represented as
exemplars, e.g. [22], while certain other works, e.g. [23,30], also search over part
positions in 2D.

In our case we actually consider that the viewpoint is provided by an external
module or by ground-truth annotations. Our modelling part is fairly similar to
that of [23], but the major difference lies in the solution space: to the best of our
knowledge we are the first work that achieves efficient and guaranteed optimal
placement of object parts in 3D. Our focus is on the solution of the combinatorial
optimization problem obtained by trying to jointly position all 3D parts of an
object in a mutually consistent configuration. For this we have built on fast
techniques for inference with 2D DPMs, [19,2], and adapted them to operate in
3D.

3 3D Deformable Part Models for Category Surface
Estimation

Given an image I and a viewpoint v, our task is to estimate the 3D coordinates of
P mesh nodes X = {x1, . . . ,xP }, where every node is a 3D position vector xi =
(hi, vi, di). We will be denoting vectors with boldface letters and will alternate
between the vector notation x and the horizontal/vertical/depth notation (h, v, d)
based on convenience.

For this we use Deformable Part Models [8] (DPMs) which provide a rigorous,
energy-based approach to modelling and detecting deformable object categories.
As we describe below, DPMs can also be adapted to our problem. We break
the problem into three steps; firstly in Sec. 3.1 we determine the 3D model,
defining the graph nodes and relationships between them. Secondly, in Sec. 3.2
we determine how the surface would look like when projected in 2D. Finally, in
Sec. 3.3 we describe how to use the image so as to indicate which of the possible
3D surfaces projects in a way that matches with the image observations.

3.1 Model graph construction

We start by describing how we obtain the nodes of the DPM graph, which requires
having access to 3D geometry related to an object category. As in [17], we rely on
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the work of [26] to recover 3D geometry from a 2D dataset, such as the PASCAL
VOC dataset; given a set of images of an object category and K category-specific
keypoint annotations, Non-Rigid Structure-from-Motion (NRSfM)[3] delivers
a joint estimation of (1) the 3D position of the K category-specific keypoints
(including occluded keypoints) and (2) a camera viewpoint estimate for each
training instance. Given the viewpoint estimates, a class-specific triangulated 3D
mesh is obtained from ground-truth segmentation masks by constructing a visual
hull from the training instance.

This 3D mesh and the K 3D-lifted keypoints are associated by projecting every
keypoint to the 3D mesh point that is closest to it on average over the training
set. This provides us with the first K nodes of our model. A denser sampling of
the mesh allows our model to more thoroughly capture the object’s shape; we
obtain P = 100 nodes using Geodesic Surface Remeshing [24], which ensures that
the K keypoints are selected, while the remaining points are roughly equidistant.
In Fig. 1(a) we illustrate an example of the input and the downsampled mesh for
the car category.

We obtain a Deformable Part Model by treating each of those mesh points
as a graph node. Edges between nodes capture geometric constraints; each
edge ei,j is associated with a 3D nominal displacement vector µi,j equalling the
average displacement between nodes i and j, and a spherical precision matrix Ci,j

indicating the typical inverse variance around that displacement. We note that
the edges do not coincide with the ones in the mesh triangulation described above.
In particular, we use edges that connect potentially opposite surface points, as
these may better capture volume constraints.

3.2 Viewpoint-adapted 3D DPMs

Having defined the model’s 3D geometry, we now turn to accounting for the
effects of camera pose, so as to connect our model to the 2D images that will be
available at test time. This includes 6 degrees of freedom, 3 for translation, and
3 for rotation.

We consider momentarily that the object is at a fixed depth, which amounts
to working with images that are scale-normalized, where scale is indicated either
by an object detection module, or by a ground-truth bounding box. As our
experiments show, searching around this originally estimated scale can yield
some improvements, but we ignore it from the following discussion. Regarding
horizontal and vertical translation, our algorithm effectively does an efficient,
exhaustive search.

The remaining degrees of variation include the camera’s azimuth, elevation
and rotation with respect to the object’s canonical coordinate system in 3D.
For this we introduce an additional viewpoint variable, v, which can either be
provided by the output of NRSfM (which requires multiple images and landmark
annotations), or by a bottom-up viewpoint estimator, as e.g. in [25]. In all of
our experiments we use the NRSfM-based viewpoint estimate, and compare to
results of systems that use the same viewpoint estimate. One can actually search
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for the viewpoint through the optimization of our model’s objective, but we leave
this for future work.

This viewpoint variable influences the model in two ways. Firstly, the 3D
nominal displacements are rotated in 3D by multiplying with Rv, the rotation
matrix corresponding to v; we denote this by adding a viewpoint superscript
to the nominal displacement vector: µv

i,j
.
= Rvµi,j . The precision matrix, being

spherical, is unaffected by viewpoint; dealing with elliptical matrices is equally
easy, but the induced coupling of coordinates would pose challenges when we turn
to optimization in Sec. 4. Secondly, the variable v is discretized into V distinct
viewpoints, obtained by uniformly quantizing the 360 azimuth degrees; we denote
by bvc the discretized value. This is used to determine in a viewpoint-dependent
manner the image-to-part affinities, as detailed below.

3.3 Cost Function

Having identified the model variables and the 3D-to-2D transformation, we can
now describe how we go from 2D to 3D, when presented with an image. The image
provides us with ‘bottom-up’ evidence about the 2D positions where each visible
landmark is likely to be seen. This expressed in terms of a landmark-specific
unary term of the form:

UI,v,i(xi) = 〈ubvci , fI(hi, vi)〉, (1)

where u
bvc
i is a viewpoint-specific weight vector for node i and fI are dense

image features. We use orthographic projection, assuming that the 3D landmark
xi = (hi, vi, di) projects to the 2D image point (hi, vi). We note also that
the argument of the unary term, xi is three-dimensional, while the underlying
information is two-dimensional.

The geometric arrangement between two landmarks i, j is controlled by a
function of two 3D arguments that prescribes preferences for the arrangement of
landmark pairs in 3D:

Vi,j,v(xi,xj) = −
(
xj−xi−µv

i,j

)T
Ci,j

(
xj − xi − µv

i,j

)
, (i, j) ∈ E . (2)

In Eq. 2 µv
i,j = Rvµi,j is the viewpoint-adapted nominal displacement and Ci,j

is the viewpoint-invariant precision matrix described in the previous subsection.
Since Ci,j is a spherical precision matrix, we can write Vi,j,v(xi,xj) = γi,j‖xj −
xi − µv

i,j‖2, showing that our model penalizes the `2 norm of the deviations of
the 3D part displacements from their rotated nominal value.

Putting things together, given an image I and a viewpoint v, we score a
landmark configuration X with a merit function S formed as the sum of unary
and pairwise terms:

SI,v(X) =

P∑
i=1

UI,bvc,i(xi) +
∑

(i,j)∈E

Vi,j,v(xi,xj), (3)
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where E is the set of edges on the graph. The unary terms introduce image-based
evidence, and the pairwise terms enforce model-based priors. The minimization
of this objective will result in an optimal placement of K landmarks in 3D while
having a 2D input.

4 Efficient Optimization for 3D DPMs

Having developed our cost function in 3D we now turn to its optimization. We
consider a star-shaped graph, where a single node (’root’) is connected to all
remaining nodes (’leaves’). The logarithm of the root node’s max-marginals for a
star-shaped graph equal:

S(xr) = max
X:Xr=xr

S(X) =
∑
i

max
xi

[Ui(xi) + Vi,r(xi,xr)] , (4)

effectively scoring a candidate root position xr by optimizing over all possible
part positions that may support it. In order to simplify notation we have removed
the image and viewpoint dependence and introduced Vi,r(xi,xr) which is defined
to be zero when xi = xr and infinity otherwise.

For the particular form of the pairwise term used here one can use the Gener-
alized Distance Transform (GDT) of [9], reducing the computational complexity
of message-passing from O(N2) to O(N) in the number of voxels. This can be
fast in 2D, but in 3D we face a linear increase of complexity and memory in the
depth resolution - so we will need to eventually tradeoff speed for accuracy.

However, we realize that the Dual-Tree Branch-and-Bound (DTBB) algorithm
of [19] directly applies to this problem. In particular, in DTBB rather than first
exhaustively computing Eq. 4 for all values of xr and then picking the maximum,
one instead performs prioritized search for the maximum - which can replace
a complexity of O(N) with one of ω(logN), i.e. logarithmic in the best-case,
which is typically orders of magnitude faster. Furthermore, since for our case
the unary terms are depth-independent, one never needs to occupy memory to
represent Ur(xr), as would be required by GDT - instead our algorithm’s memory
complexity is constant in depth resolution.

In a bit more detail, the DTBB algorithm performs prioritized search over
intervals of root positions, denoted by X, using as priority an upper bound to
the score in the interval. For this one bounds the right side of Eq. 4 over a root
interval X, using the following series of inequalities:

max
xr∈X

S(xr) ≤
∑
i

max
xr∈X,xi

Ui(xi) + Vi,r(xi,xr)

≤
∑
i

max
xi

Ui(xi) +
∑
i

max
xr∈X,xi

Vi,r(xi,xr),
(5)

where both inequalities follow from maxx f(x) + g(x) ≤ maxx f(x) + maxx g(x).
Intuitively, the first inequality opportunistically uses contributions from different
nodes, even if they do not agree on the particular xr ∈ X that they support, and
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the second inequality opportunistically uses contributions from the unary and
pairwise terms of a single node, even if they do not agree on the value of xi that
lends the support.

Two facts prove useful in computing Eq. 5 efficiently: firstly, the maximization
maxxi

Ui(xi) can be computed in 2D, since Ui(xi) is independent of the di
component of xi. As such, we never need to explicitly allocate memory to store
the unary term in 3D, as would be required by GDTs. Secondly, the maximization
over the combinations of xi,xr can be computed analytically , with a cost that is
constant, and independent of the cardinality of the two sets; all one needs to do is
extend the 2D bounding schemes of [20] to 3D, and the complexity increases from
4 summation and multiplication operations (in [20]) to 6. Other than these two
observations, we use the exact same algorithm as in [19,20]; for lack of space we
refer the interested reader to those references for a more thorough presentation
of DTBB.

Another substantial accelaration can be obtained by noting that the pair-
wise term is invariant to depth translations. Combining this with the depth-
independent nature of our unary terms, means that we have a one-dimensional
family of equally good solutions. Intuitively, the only constraint imposed by
our model consists in properly ‘unfolding’ the object in 3D space, while the
particular depth value around which this happens is irrelevant. As illustrated in
our experimental results in 2, Branch-and-Bound would waste time on exploring
evenly all those equivalent solutions; instead we fix the model’s root node at a
fixed depth, and use it as an anchor point for the leaf nodes.

5 Model learning

Having outlined our cost function and our optimization algorithm we now turn
to parameter estimation. Given a candidate configuration X = (x1, . . . ,xP )
of P parts, we treat our cost function in 3 as the inner product between an
image-specific feature vector F(X) and a model-specific weight vector w, S(X) =
〈w,F(X)〉.

The feature vector comprises the P D-dimensional vectors extracted from the
part positions f(xp), p = 1, . . . , P , and the model deformations with respect to
the nominal displacements from the leaves to the root node (xp− xl−µv

r,p)2, p =
2, . . . , P for each of the 3 dimensions. This accounts for a total size of PD+3(P−1),
which is also the dimension of the learned weight vector. We do not estimate
µv
r,p discriminatively, as this would impede the viewpoint-based coupling of these

parameters described in Sec. 3.2. We do however estimate the relative weight
of the above `2 distance and use the average displacement to define µ, which
combined with the viewpoint v yields µv

r,p. The unary terms of graph nodes
that do not correspond to one of the human-annotated keypoints are set to 0,
meaning that the image evidence does not affect their position - while for a given
viewpoint we set to zero the features of points that are not visible.

In order to learn the corresponding parameter weights, we use Structured
Support Vector Machine (SSVM) training a cutting-plane optimizer [15], as
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done in the context of Deformable Part Models e.g. in [23,2]. In particular
we measure the performance of a particular weight vector in terms of a loss
function ∆(X∗Ii , X̂i) which represents the cost incurred by labelling image i as

X∗Ii when the ground truth is X̂i. We choose to use the Mean Euclidean Distance,

∆(X̂,X) = 1
P

∑P
p=1 ‖xp − x̂p‖2 as a loss for our learning task, penalizing the

3D displacement of our estimated landmarks from their ground truth positions.
This loss decomposes over each node of the graph. This allows us to leverage the
tractability of the inference in the learning procedure, as is common in Structured
SVMs.

More specifically, each iteration of the cutting plane algorithm requires the
computation of the most violated constraint given the current estimate of the
joint weight vector wi, finding a configuration Xi

cp that is consistent with the
model, yet incurs a high loss. This subroutine corresponds to the optimization
problem:

Xi
cp = arg max

X̂

SI,v(X̂) +∆(X̂,X) (6)

for each instance (I,X) of the labelled training set. By incorporating the loss
in the expression of our model’s configuration score , this problem is cast as an
equivalent inference problem with modified unaries, scoring a configuration as:

S̃I,v(X̂) =

P∑
i=1

(
UI,bvc,i(xi) + δ(x̂i,xi)

)
+
∑

(i,j)∈E

Vi,j,v(xi,xj) (7)

where δ(x̂i,xi) = 1/P‖x̂i − xi‖. The complexity of the subroutine is therefore
equivalent to the complexity of our inference algorithm. This framework allows
to learn the joint weight vectors in a tractable time of the order of a few hours
per view and category.

6 Results

We use the Pascal 3D+ dataset for all of our experiments [27], comprising 1408
images over 10 object categories. The ground truth 3D objects are given by the
dataset via rotated and positioned CAD models. We use these CAD models solely
for the evaluation of our method.

For feature computation we extract dense image features using the Deeplab
network of [6], which is a fully convolutional neural network (FCNN) trained for
semantic segmentation. We use the intermediate-level layer activations from layers
3 and 5 yielding a position-dependent feature vector of dimension D = 769. Using
both lower- and mid-level features gives our unary terms the option of achieve
both good localization results (low-level), and good invariance to intra-class
appearance variability (high-level).

We evaluate our models in terms of inference acceleration and model per-
formance. Firstly we benchmark the runtime of Branch-and-Bound in 3D and
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Fig. 2. Left: acceleration of branch-and-bound versus Generalized Distance Transforms
as a function of depth resolution. The yellow curve shows the runtime of inference
with our Branch-and-Bound algorithm in 3D. The red curve reveals the effect of not
anchoring the model in depth, whereas the blue curve represents the implementation
with GDTs. Branch-and-Bound is orders of magnitude faster than the GDT based
implementation even on moderate depth ranges. Right: Branch-and-Bound performance
on two indicative categories, car and aeroplane. The runtime of our algorithm is hardly
affected when increasing the number of depth layers.

compare it to message-passing with Generalized Distance Transforms [9], com-
monly used in Deformable Part Models. Secondly we demonstrate that our
method outperform the previous state of the art of [17] on 7 out of 10 categories
using multi-scale of the Pascal 3D+ dataset. The single-scale version doesn’t
decisively outperform [17] (5/10), but yields comparable results in much faster
runtime.

6.1 Branch-and-Bound in 3D

To benchmark the acceleration delivered by Branch-and-Bound in 3D we test
our algorithm with a varying number of depth layers nd; Our algorithm has a
logarithmic best-case complexity, while inference with the Generalized Distance
Transform (GDT) ([9]) scales linearly in nd.

Figure 2 on the left empirically demonstrates that this is the case, showing the
runtime of Branch-and-Bound on a varying number of depth layers (yellow graph).
We set it against a Generalized Distance Transform (GDT) based implementation
(blue graph). The timings have been obtained by averaging over the individual
contributions of 100 images, 10 from each category, the average standard deviation
has been annotated in the graph. The GDT-based inference is about two orders of
magnitude slower than the inference with Branch-and-Bound if we set nd = 100.
The red graph displays the runtime of Branch-and-Bound when the model is not
anchored in depth to distinguish between otherwise equivalent solutions.We note
that above a certain size of depth range the computation times increases sharply,
indicating that the number of equivalent solutions increases and Branch-and-
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Fig. 3. Some reconstructed surfaces in 5 categories.

Bound explores these solutions. By contrast the anchored Branch-and-Bound
only increases logarithmically in nd, being able to perform inference in less than
0.2 seconds.

6.2 Surface Estimation

Following the methodology of Kar et al. [17], we measure the performance of our
method by using the Hausdorff distance dH to compare the system’s output with
the ground truth, dH(X,Y ) = max{supx∈X infy∈Y d(x, y), supy∈Y infx∈X d(x, y)},
with points x ∈ X being the points on the surface of the ground truth shape
X and points y ∈ Y being the points on the surface of the inferred shape Y
following rigid alignment.

We display in Table 1 the average Hausdorff distance between the inferred
mesh of our star-graph model, and reference CAD model associated to the object
instance. In the third row of this table, we show that applying the model on
different scales improves the Hausdorff error, which hints at possible future
improvements of our method incorporating viewpoint estimation in the inference.
Moreover, Fig. 3 shows some examples of inferred placed models. We observe
that despite the simplicity of star-shaped graphical models and the speed of the
inference, we are competitive to [17], obtaining a better accuracy [17] in most
categories.

Table 1. Mesh errors computed using the Hausdorff error with respect to the centered
ground-truth CAD models provided in Pascal VOC 3D+ (lower is better).

plane bike boat bus car chair sofa train tv mbike mean

Kar et al. [17] 2.2 4.4 6.0 3.9 3.2 2.6 8.8 6.6 4.5 2.9 4.5
1 star 2.4 4.1 6.1 4.1 3.1 3.2 5.3 6.3 3.4 3.0 4.1
1 star multiscale 2.4 4.0 5.7 3.8 3.1 3.0 5.5 6.0 3.3 3.0 4.0
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7 Conclusion and Future Work

In this work we have shown that Branch-and-Bound is suitable to infer DPMs
in 3D and can preserve its logarithmic scalability. To this end we also provide a
method to learn DPMs from silhouette information and viewpoint annotations.
The model is simple, but outperforms the model of Kar et a. [17] in some
categories by a significant margin. On average over categories we yield an 11%
smaller Hausdorff error.

From our results, we see that BB can be a good option for rapid inference. This
shows that future work is needed to explore the full potential of BB. Our future
investigations will also aim at extending Branch-and-Bound to more general
energies (for example loopy graph structures) and other types of potentials.

Using an energy-based model also leaves open the potential of coupling
structured prediction techniques with CNN training [7] for the task of surface
estimation. We leave this last direction for future work, but we consider it as a
promising direction that is opened by our energy-based approach.
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