J. Arsuaga, N. A. Baas, D. Dewoskin, H. Mizuno, A. Pankov et al., Topological analysis of gene expression arrays identifies high risk molecular subtypes in breast cancer, Applicable Algebra in Engineering, Communication and Computing, vol.47, issue.Suppl, pp.3-15, 2012.
DOI : 10.1007/s00200-012-0166-8

D. Attali, A. Lieutier, and D. Salinas, EFFICIENT DATA STRUCTURE FOR REPRESENTING AND SIMPLIFYING SIMPLICIAL COMPLEXES IN HIGH DIMENSIONS, International Journal of Computational Geometry & Applications, vol.22, issue.04, pp.279-304, 2012.
DOI : 10.1142/S0218195912600060

URL : https://hal.archives-ouvertes.fr/hal-00785082

J. Boissonnat, R. Dyer, and A. Ghosh, A Probabilistic Approach to Reducing Algebraic Complexity of Delaunay Triangulations, Algorithms -ESA 2015 -23rd Annual European Symposium Proceedings, pp.595-606, 2015.
DOI : 10.1007/978-3-662-48350-3_50

URL : https://hal.archives-ouvertes.fr/hal-01213070

J. Boissonnat, T. K. Dey, and C. Maria, The Compressed Annotation Matrix: An Efficient Data Structure for Computing Persistent Cohomology, Algorithmica, vol.33, issue.2, pp.607-619, 2015.
DOI : 10.1007/s00453-015-9999-4

URL : https://hal.archives-ouvertes.fr/hal-00761468

J. Boissonnat and C. Maria, Computing Persistent Homology with Various Coefficient Fields in a Single Pass, Algorithms -ESA 2014 -22th Annual European Symposium Proceedings, pp.185-196, 2014.
DOI : 10.1007/978-3-662-44777-2_16

URL : https://hal.archives-ouvertes.fr/hal-00922572

J. Boissonnat and C. Maria, The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes, Algorithmica, vol.132, issue.23, pp.406-427, 2014.
DOI : 10.1007/s00453-014-9887-3

URL : https://hal.archives-ouvertes.fr/hal-00707901

J. Roberto, B. Bayardo, and . Panda, Fast algorithms for finding extremal sets, Proceedings of the Eleventh SIAM International Conference on Data Mining, SDM 2011, pp.25-34, 2011.

J. Boissonnat, C. S. Karthik, and S. Tavenas, Building efficient and compact data structures for simplicial complexes. Algorithmica, pp.1-38, 2016.
DOI : 10.1007/s00453-016-0207-y

URL : https://hal.archives-ouvertes.fr/hal-01145407

D. Chazal, M. Cohen-steiner, L. J. Glisse, S. Guibas, and . Oudot, Proximity of persistence modules and their diagrams, Proceedings of the 25th annual symposium on Computational geometry, SCG '09, pp.237-246, 2009.
DOI : 10.1145/1542362.1542407

URL : https://hal.archives-ouvertes.fr/inria-00292566

J. Minhow-chan, G. Carlsson, and R. Rabadan, Topology of viral evolution, Proceedings of the National Academy of Sciences, pp.18566-18571, 2013.

E. Gunnar, T. Carlsson, . Ishkhanov, A. Vin-de-silva, and . Zomorodian, On the local behavior of spaces of natural images, International Journal of Computer Vision, vol.76, issue.1, pp.1-12, 2008.

K. Tamal, F. Dey, Y. Fan, and . Silva, Computing topological persistence for simplicial maps A weak characterisation of the delaunay triangulation, 30th Annual Symposium on Computational Geometry, pp.34539-64, 2008.

]. V. De-silva and R. Ghrist, Coverage in sensor networks via persistent homology, Algebraic & Geometric Topology 7, pp.339-358, 2007.
DOI : 10.2140/agt.2007.7.339

G. Durn, Some new results on circle graphs, Matemtica Contempornea, 2003.

H. Edelsbrunner and J. Harer, Computational Topology -an Introduction, 2010.

[. Eppstein, M. Löffler, and D. Strash, Listing All Maximal Cliques in Sparse Graphs in Near-Optimal Time, Algorithms and Computation -21st International Symposium, ISAAC 2010 Proceedings, Part I, pp.403-414, 2010.
DOI : 10.1007/978-3-642-17517-6_36

L. François and . Gall, Powers of tensors and fast matrix multiplication, International Symposium on Symbolic and Algebraic Computation, pp.296-303, 2014.

[. Gavril, Algorithms on circular-arc graphs, Networks, vol.38, issue.4, pp.357-369, 1974.
DOI : 10.1002/net.3230040407

M. Grohe, S. Kreutzer, and S. Siebertz, Characterisations of nowhere dense graphs (invited talk), IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2013, pp.21-40, 2013.

M. Charles and G. , Algorithmic graph theory and perfect graphs. Computer science and applied mathematics, 1980.

[. Makino and T. Uno, New Algorithms for Enumerating All Maximal Cliques, Algorithm Theory -SWAT 2004, 9th Scandinavian Workshop on Algorithm Theory Proceedings, pp.260-272, 2004.
DOI : 10.1007/978-3-540-27810-8_23

A. Jose, G. Perea, and . Carlsson, A klein-bottle-based dictionary for texture representation, Pri95] Erich Prisner. Graphs with few cliques 7th Quadrennial International Conference on the Theory and Applications of Graphs, Graph Theory, Combinatorics, and Applications, pp.75-97, 1995.

P. Pritchard, An old sub-quadratic algorithm for rinding extremal sets, Information Processing Letters, vol.62, issue.6, pp.329-334, 1997.
DOI : 10.1016/S0020-0190(97)00084-7

L. Rosgen and . Stewart, Complexity results on graphs with few cliques, Discrete Mathematics & Theoretical Computer Science, vol.9, issue.1, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00966509

J. P. Spinrad, Efficient Graph Representations.: The Fields Institute for Research in Mathematical Sciences. Fields Institute monographs, 2003.
DOI : 10.1090/fim/019

M. Daniel and . Yellin, Algorithms for subset testing and finding maximal sets, Proceedings of the Third Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, pp.27-29, 1992.

M. Daniel, C. S. Yellin, and . Jutla, Finding extremal sets in less than quadratic time, Inf. Process. Lett, vol.48, issue.1, pp.29-34, 1993.