S. Athanassopoulos, C. Kaklamanis, I. Laftsidis, and E. Papaioannou, An experimental study of greedy routing algorithms, 2010 International Conference on High Performance Computing & Simulation, pp.150-156, 2010.
DOI : 10.1109/HPCS.2010.5547143

P. Barrière, E. Fraigniaud, D. Kranakis, and . Krizanc, Efficient Routing in Networks with Long Range Contacts, Proceedings of the 15th International Conference on Distributed Computing, DISC '01, pp.270-284, 2001.
DOI : 10.1007/3-540-45414-4_19

S. Ithiel-de, M. Pool, and . Kochen, Contacts and influence, Social Networks, vol.1, pp.5-51, 1978.

I. M. Dunbar, Neocortex size as a constraint on group size in primates, Journal of Human Evolution, vol.22, issue.6, pp.469-493, 1992.
DOI : 10.1016/0047-2484(92)90081-J

D. Easley and J. Kleinberg, The small-world phenomenon In Networks, Crowds, and Markets: Reasoning About a Highly Connected World, pp.611-644, 2010.

P. Fraigniaud, C. Gavoille, and A. Kosowski, Emmanuelle Lebhar, and Zvi Lotker. Universal Augmentation Schemes for Network Navigability: Overcoming the (n)-Barrier

P. Fraigniaud, C. Gavoille, and C. Paul, Eclecticism shrinks even small worlds, Proceedings of the twenty-third annual ACM symposium on Principles of distributed computing , PODC '04, pp.279-291, 2006.
DOI : 10.1145/1011767.1011793

URL : https://hal.archives-ouvertes.fr/hal-00307394

P. Fraigniaud and G. Giakkoupis, On the searchability of small-world networks with arbitrary underlying structure, Proceedings of the 42nd ACM symposium on Theory of computing, STOC '10, pp.389-398, 2010.
DOI : 10.1145/1806689.1806744

P. Fraigniaud and G. Giakkoupis, Greedy routing in small-world networks with power-law degrees. Distributed Computing, pp.231-253, 1929.
DOI : 10.1007/s00446-014-0210-y

URL : https://hal.archives-ouvertes.fr/hal-01097141

J. Kleinberg, Navigation in a small world, Nature, 2000.

J. Kleinberg, The small-world phenomenon, Proceedings of the thirty-second annual ACM symposium on Theory of computing , STOC '00, pp.163-170, 2000.
DOI : 10.1145/335305.335325

D. Liben-nowell, J. Novak, R. Kumar, P. Raghavan, and A. Tomkins, Geographic routing in social networks, Proceedings of the National Academy of Sciences of the United States of America, pp.11623-11628, 2005.
DOI : 10.1073/pnas.0503018102

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1187977

G. Singh-manku, M. Naor, and U. Wieder, Know thy neighbor's neighbor: The power of lookahead in randomized P2P networks, Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing (STOC), pp.54-63, 2004.

C. Martel and V. Nguyen, Analyzing Kleinberg's (and other) small-world Models, Proceedings of the twenty-third annual ACM symposium on Principles of distributed computing , PODC '04, pp.179-188, 2004.
DOI : 10.1145/1011767.1011794

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Tyler, M. J. Mccormick, T. Salganik, and . Zheng, How many people do you know?: Efficiently estimating personal network size, Journal of the American Statistical Association, vol.105, issue.489, pp.59-70, 2010.

S. Milgram, The small world problem, Psychology Today, vol.67, issue.1, pp.61-67, 1967.
DOI : 10.1037/e400002009-005

M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms and Probabilistic Analysis, 2005.
DOI : 10.1017/CBO9780511813603

H. William, S. A. Press, W. T. Teukolsky, B. P. Vetterling, and . Flannery, Minimization or maximization of functions The Art of Scientific Computing, chapter 10, Numerical Recipes 3rd Edition, 2007.

J. Travers and S. Milgram, An Experimental Study of the Small World Problem, Sociometry, vol.32, issue.4, pp.425-443, 1969.
DOI : 10.2307/2786545

. John-von-neumann, Various techniques used in connection with random digits, Nat. Bureau Standards, vol.12, pp.36-38, 1951.

B. Wellman, Is Dunbar's number up?, British Journal of Psychology, vol.101, issue.474, 2011.
DOI : 10.1111/j.2044-8295.2011.02075.x