
HAL Id: hal-01417156
https://hal.inria.fr/hal-01417156

Submitted on 15 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RDF Graph Alignment with Bisimulation
Peter Buneman, Slawek Staworko

To cite this version:
Peter Buneman, Slawek Staworko. RDF Graph Alignment with Bisimulation. VLDB 2016 - 42nd
International Conference on Very Large Databases, Sep 2016, New Dehli, India. International Con-
ference on Very Large Databases (VLDB), 9 (12), pp.1149 - 1160, 2016, Proceedings of the VLDB
Endowment. <10.14778/2994509.2994531>. <hal-01417156>

https://hal.inria.fr/hal-01417156
https://hal.archives-ouvertes.fr

RDF Graph Alignment with Bisimulation

Peter Buneman1 Sławek Staworko1,2,3

1University of Edinburgh 2University of Lille 3LINKS, INRIA Nord-Europe

{opb,sstawork}@inf.ed.ac.uk

ABSTRACT
We investigate the problem of aligning two RDF databases,
an essential problem in understanding the evolution of ontolo-
gies. Our approaches address three fundamental challenges:
1) the use of “blank” (null) names, 2) ontology changes in
which different names are used to identify the same entity,
and 3) small changes in the data values as well as small
changes in the graph structure of the RDF database. We
propose approaches inspired by the classical notion of graph
bisimulation and extend them to capture the natural metrics
of edit distance on the data values and the graph structure.
We evaluate our methods on three evolving curated data
sets. Overall, our results show that the proposed methods
perform well and are scalable.

1. INTRODUCTION
Identifying references to the same real-life entity is one

of the most fundamental concerns in databases. It plays
an important if not crucial role in virtually all non-trivial
data processing tasks from computing join of two tables to
removing duplicate entries in data cleaning [15] to combining
data objects in multiple databases in data integration [3].
This problem comes in a number of flavors depending on
the type of data used to identify the entity represented
by a given data object. Ideally, as in the case of a well-
designed stand-alone database, a consistent system of unique
identifiers supports the linkage of objects in a manner that
is reliable and efficient. However, independent databases
may use different and often incompatible schemes of unique
identifiers. Consequently, linking their contents may require
using other methods, based on data values and the structure
of the databases to match corresponding identifiers [8].

In this paper we study an instance of this problem that
arises in the context of evolving RDF graphs: for two con-
secutive versions of an RDF graph we wish to construct an
alignment that connects pairs of nodes, in the two versions,
that represent the same entity. RDF is essentially an edge-
labeled graph that uses URIs (Unique Resource Identifiers)

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 12
Copyright 2016 VLDB Endowment 2150-8097/16/08.

as nodes and edge labels but also has blank nodes, which
are not persistent identifiers, as well as literal nodes, which
store (unique) data strings. Because of the varied types of
nodes aligning two RDF graphs presents a number of in-
teresting challenges. While it is reasonable to assume that
two nodes labeled with the same URI represent the same
entity, the converse is not necessarily true. Indeed, the same
entity may be represented in different versions with different
identifiers, for instance, as a result of changing the scheme of
attributing URIs. Even more problematic are blank nodes,
which although discouraged are often misused when using
reification for purpose of representing data structures such as
lists and records [5]. Because blank nodes are not persistent
identifiers, we require methods to establish an identity for
a blank node based on a description by its neighborhood in
the graph. However, this is a nontrivial task because both
the data values and the connections may undergo modifica-
tions in the subsequent version of the RDF graph. Finally,
constructing an alignment between two RDF graphs presents
a significant computational challenge: RDF graphs tend to
be large, which quickly renders infeasible any method that
attempts to perform pairwise comparison between all pairs
of nodes of the two graphs.

We investigate a number of methods of aligning RDF
graphs inspired by the classical notion of bisimulation for
graphs. In essence, two nodes are bisimilar if they cannot be
distinguished from each other by structural comparison of
their outbound neighborhoods in which the nodes reachable
from the bisimilar nodes are also bisimilar. What makes
bisimulation particularly interesting is its computational
properties: it is well-known that bisimulation can be com-
puted in sub-quadratic time [13] but the basic partition
refinement approach, while having quadratic worst-case com-
plexity, scales well in practice [16] and we have chosen it as
a basis of RDF alignment algorithms.

Example 1. Consider corrections in an evolving RDFgraph
presented in Figure 1 containing personal information of one
of the authors of this paper. The first name is changed from
the diminutive S lawek to its legal variant S lawomir, and an
erroneous middle name Pawe l is removed. Also, the URI
representing the University of Edinburgh is changed from
ed-uni to uoe. Note that a majority of literals and one URI,
ss, can be trivially aligned by testing label equality. However,
this simple method does not work for the address information
even though it does not change. Here, address is structured
as a record represented with a blank node and blank nodes
are labeled with local identifiers that distinguish them only in
a single version. Bisimulation aligns the blank nodes b1 and

version 1 version 2

ss

b1

ed-uni

b2

“EH8”

“Edinburgh”

“University of
Edinburgh”

“Staworko”

“S lawek”

“Pawe l”

address

employer

nam
e

zip

city

name

city

first
middle

last

ss

b3

uoe

b4

“EH8”

“Edinburgh”

“University of
Edinburgh”

“S lawomir”

“Staworko”

address

employer

name

zip

city

name

city

first

last

trivial alignment
(label equality)

bisimulation
alignment

similarity measure
alignment

Figure 1: Alignment methods on two consecutive versions of an evolving RDF graph: uris are typeset in
sanserif, “literals” are in italics surrounded by quotes, and blank nodes are b.

b3 because they represent a record with the same informa-
tion structured in the same manner. Similarly, bisimulation
aligns the nodes ed-uni and uoe. However, bisimulation re-
quires strict similarity in the data values and the structure of
the graph, and therefore, cannot handle edit changes in the
data values and the structure. Consequently, bisimulation
does not align the nodes b2 and b4 even though there is a
significant evidence that they represent the same entity (the
name of the same person.) �

Aligning nodes b2 and b4 (Figure 1) calls for similarity
methods, and we propose a natural similarity measure based
on the string edit distance on literal nodes and the graph
edit distance for non-literal nodes. While this method can
align the nodes b2 and b4, it suffers from high complexity,
which springs from the sizes of the input RDF graphs and the
combinatorial nature of the edit distance problem: indeed,
the lower complexity bound for the edit distance is quadratic
for strings [19, 6] and cubic for graphs [7].

To overcome this obstacle, we investigate extending the
bisimulation approach to account for such edits. While
bisimulation defines a partition of nodes into clusters of in-
distinguishable nodes, we propose an approach that defines a
weighted partition, where every node still belongs to exactly
one cluster but is additionally attributed with a confidence
value. Intuitively, the confidence value captures the distance
of the node from the center of the cluster, which can be used
to approximate the relative distance between two nodes in
the same cluster. The limitation of the membership of a
node to exactly one cluster has both positive and negative
consequences. While it enables a scalable method for con-
structing weighted partitions, the weighted partition only
approximates the goal similarity measure and the resulting
alignment may be incomplete. Our experiments show, how-
ever, that the trade-off is generally positive: with a diligent
application of a number of natural optimizations we obtain
a relatively scalable method for RDF alignment that fails to

align correctly relatively few pairs of nodes. We also show
that any pair aligned with this method is also aligned with
the similarity method we wish to approximate.

The main contributions of the present paper are summa-
rized as follows:

1. We formalize the problem of RDF graph alignment and
present a methodology of aligning RDF graphs with
partitions of the nodes.

2. We propose RDF alignment methods based on the
standard notion of bisimulation for graphs that handles
blank nodes and changes in ontology (URI naming
schemes).

3. We propose a natural measure of node similarity that
yields an RDF alignment method robust under editing
operations and extend the bisimulation approach to
approximate the proposed similarity method.

4. We evaluate the accuracy and effectiveness of these
methods on widely used databases presented in RDF.

Related Work. The similarity measure we define bears some
resemblance to the similarity flooding approach [12] with an
important difference in how similarities are propagated: when
defining the similarity of two nodes, the similarity flooding
takes a weighted average over the Cartesian product of sets
of outgoing edges of the two nodes while our approach iden-
tifies the optimal matching among the outgoing edges. We
believe this approach to be more appropriate in the context
of evolving graphs and incorporates edit operations on the
edges. Still, the inherent complexity of both methods limits
their scalability, and the aim of our research is development
of scalable methods for identifying similar objects.

There is extensive work on entity resolution in the context
of relational databases, however a comparison with that work
is problematic. Because we are using RDF and because we

are placing predicates on the same footing as other URIs
the problem we are setting ourselves is, in some sense, more
general. It is equivalent to finding an alignment between two
versions of a relational database in which one (a) changes all
the table names and column names and (b) changes all the
key values. All that is kept are the non-key data values and
the foreign key constraints. In other words, we are trying
to find an alignment between two versions of a relational
database in which one applies a bijective map to all the
column names and to all the key values as well as making
some updates to one of the versions.

There is also extensive literature on graph alignment [2].
Constructing an alignment between two graphs is virtually
equivalent to constructing their delta [20], a description of
changes occurring between the two graphs. The existing re-
search [14] focuses mainly on on reporting high-level changes
identifying ontology changes (rdf:type) and compactly rep-
resenting the delta whereas we treat RDF as a stand-alone
data representation system and identify low-level changes
occurring on the atomic level of nodes and their labels. The
ability of identifying ontology changes may potentially al-
low both directions to reinforce each other. Handling blank
nodes in the context of change detection is known to be
very challenging (graph isomorphism) and a method of label-
invention have been proposed [17]. This method works under
the assumption that the blank nodes do not form cycles
and can be seen as an adaptation of existing XML archiving
techniques [1]. Our work generalises this method: we handle
cycles, editing operations, and can even identify ontology
changes.

Organization. In Section 2 we define basic notions. In Sec-
tion 3 we state the problem of RDF graph alignment and
present a number of alignment methods inspired by bisimu-
lation. In Section 4 we present a natural measure for node
similarity for RDF alignment and propose its approxima-
tion based on an extension of bisimulation that is robust
under editing operations. Section 5 contains experimental
evaluation of the proposed methods. Section 6 contains the
conclusions of our study and a discussion of future research.
Because of space restrictions we omit proofs, some formal def-
initions, and numerical values of our experiments; they can
be found in the appendix of the complete version available
at http://arxiv.org/abs/1606.08657.

2. PRELIMINARIES
In this section we define the data model for RDF graphs,

formalize the notion of partition, and define the notion of
bisimulation for RDF graphs.

2.1 Data model
RDF graphs are typically represented as sets of triples of

URIs, literals, and blank nodes. Because we are dealing with
two graphs that may contain the same URI we need a more
general model that uses node identifiers and treats the URIs
and literals as labels: we assume an enumerable set of node
identifiers N and a set of labels I = U ∪ L ∪ { b}, which
consists of URI labels U , literal values L, and a special blank
value b used to label blank nodes. We assume that U and
L are disjoint and neither contains b.

Definition 1. A (triple) graph is a tuple G = (NG, EG, `G),
where NG ⊆ N is a finite set of nodes, EG ⊆ NG×NG×NG

is a set node triples (edges), and `G : NG → I is a node
labeling function. �

The URIs of G, URIs(G) are those nodes n ∈ G for which
`(n) ∈ U . Literals(G) and Blanks(G) are defined similarly.

We now define an RDF graph (e.g., one of the two versions
we are trying to align) as a triple graph in which no two
nodes have the same URI or literal label and the labels agree
with the usual RDF conventions (literal labels only occur as
objects and predicates cannot have blank labels.)

Throughout this paper we adopt a convention where URIs
are typeset in sanserif, blank nodes are b with appropriate
subscript, and “literals” are in italics surrounded by quotes.
For instance, Figure 2 presents an example of an RDF graph
in which nodes are identified by their label and blank-labeled
nodes are decorated with a subscript.

w

b1 u “b”

“a”
b2

b3p

p

q

r

p

q

q

r
q

q

Figure 2: An RDF graph.

Using node identifiers that are independent of labels allows
us to take two versions of the same RDF graph with possibly
overlapping labels and combine them without confusing nodes
with the same label. Graphs G1 = (N1, E1, `1) and G2 =
(N2, E2, `2) are disjoint if N1 ∩N2 = ∅. Their disjoint union
is G1]G2 = (N1 ∪N2, E1 ∪ E2, `1 ∪ `2).

2.2 Partitions
We align two versions of an RDF graph using equivalence

relations represented by partitions of the node set of the
combined graph. Partitions can be described by assigning
every node a unique color; the equivalence classes are then
the sets of nodes with the same color.

Formally, we assume an enumerable set of colors C, which
allows both node labels and node identifiers to be used as
colors as well as other structures that we can build from
these. A partition of a graph G is a function λ : NG → C
that assigns a color to every node of G. Throughout this
paper, we only work with partitions of the same graph and
we normally assume the graph to be known from the context.
Note that the node labeling function `G is also a partition
of G, which groups nodes by their labels, and in particular,
places all blank nodes in the same equivalence class.

A partition λ defines an equivalence relation on the nodes
of the graph, Rλ = {(n,m) ∈ NG ×NG | λ(n) = λ(m)}. A
partition λ1 is finer than a partition λ2 if Rλ1 ⊆ Rλ2 . Two
partitions λ1 and λ2 are equivalent, in symbols λ1 ≡ λ2, if
Rλ1 = Rλ2 .

2.3 Bisimulation
Bisimulation is often defined on edge-labeled graphs. While

RDF graphs are often drawn as such graphs with a triple
(s, p, o) represented as an edge (s, o) labeled with p, the label
p is itself a node, and should participate in the bisimulation
relation. We therefore adapt the definition of bisimulation
to triple graphs by treating them as graphs in which the

triple (s, p, o) is represented as an unlabeled edge connecting
the node s to the pair (p, o), and consequently, define the
outbound neighborhood of a node n in G as:

outG(n) = {(p, o) | (n, p, o) ∈ EG}.

Definition 2. A binary relation R ⊆ NG ×NG is a simu-
lation on a graph G = (NG, EG, `G) if for every (n,m) ∈ R
we have `G(n) = `G(m) and for any (p, o) ∈ outG(n) there
is (p′, o′) ∈ outG(m) such that (p, p′) ∈ R and (o, o′) ∈ R. R
is a bisimulation on G if both R and R−1 are simulations
on G. Two nodes n and m of G are bisimilar if there is a
bisimulation R on G such that (n,m) ∈ R. �

In the graph in Figure 2 the nodes b2 and b3 are bisimilar.
Bisimulation identifies pairs of nodes that are indistinguish-
able by means of exploration of their outbound neighborhood,
or intuitively, nodes having the same contents, as it is the
case with the nodes b1 and b3 in the graph in Figure 1.

The identity relation on the nodes of a graph is always a
bisimulation. If R1 and R2 are bisimulations on G, so is their
union R1 ∪R2. Since all bisimulations on G are subsets of
the finite Cartesian product NG ×NG, there exists a unique
maximal bisimulation, Bisim(G), on G. Furthermore, the
maximal bisimulation on a graph is an equivalence relation
on nodes of the graph and thus defines a partition.

3. RDF GRAPH ALIGNMENT
Throughout most of the development we fix a single com-

bined graph G = (NG, EG, `G), which (see Section 2.1) is
the disjoint union of the source graph G1 = (N1, E1, `1) and
target graph G2 = (N2, E2, `2) we want to align. Figure 3
shows such a union whose evolution can be described as re-
placing the equivalent blank nodes b2 and b3 with a single
blank node b4 and renaming the URI u to v. While the
blank node b1 has not been modified, in the second graph
it has a different identifier b5.

G1

w

b1 u “b”

“a”b2

b3p

p

q

r

p

q

q

r
q

q
G2

w

b5v“b”

“a” b4

p

p

q

r

p

q

q

r

q

Trivial Deblank Hybrid

Figure 3: Progressive alignment of two RDF graphs.

3.1 Alignment by partition
Aligning two graphs consists of identifying pairs of cor-

responding nodes. We do not require, however, this to be
a 1-to-1 correspondence, as a node of one graph may have
a number of possible matches in the other. This allows us
to model uncertainty of the correspondence between nodes;
and even when the correspondence is free of uncertainty, we
can represent redundancy in graphs such as the equivalent
blank nodes b2 and b3 in the graph in Figure 3. Given a

partition λ we define the corresponding alignment of G1 and
G2 as

Align(λ) = {(n,m) ∈ N1 ×N2 | λ(n) = λ(m)}.

Alignments defined with partitions are precisely those binary
relations that have the crossover property. An alignment
A of G1 and G2 has this property if whenever (n,m) ∈ A,
(n,m′) ∈ A, and (n′,m) ∈ A, then also (n′,m′) ∈ A.

An example of an alignment defined with a partition is
the trivial alignment that uses label equality on non-blank
nodes, defined with the following partition of G (n ∈ NG):

λTrivial(n) =

{
`G(n) if n is a non-blank node,

n if n is a blank node.

Indeed, λTrivial aligns only non-blank nodes with the same
label as illustrated in Figure 3.

The alignment methods we propose in this paper work
progressively, aligning previously unaligned nodes. The un-
aligned nodes in G1 are those which λ does not associate
with a node of G2: Unaligned1(λ) = {n ∈ N1 | @m ∈
N2. λ(n) = λ(m)}. Unaligned2(λ) is defined similarly, and
Unaligned(λ) = Unaligned1(λ) ∪Unaligned2(λ).

3.2 Partition refinement
As a first step we employ partition refinement technique

to improve on trivial alignment with bisimulation.

Definition 3. A (one-step) partition refinement is a func-
tion Λ that maps one partition of G to another partition of G
such that Λ(λ) is finer than λ and Λ(λ1) ≡ Λ(λ2) whenever
λ1 ≡ λ2. �

The first condition is natural and requires the process to be
monotone; the second condition allows only those refinement
functions that are independent of the representation of the
partition. The refinement function is applied iteratively to a
given initial partition until the process stabilizes i.e., further
applications of the function yield an equivalent partition.
Taken together, these two conditions guarantee termination.

Definition 4. The refinement Λ∗(λ) of λ w.r.t. Λ is Λn(λ)
where n is minimal such that Λn(λ) ≡ Λn+1(λ) �

Λ∗(λ) is – to within recoloring – a fixpoint of Λ on λ. We in-
corporate bisimulation by coloring a node with the combined
colors of its outbound node pairs:

recolorλ(n) = (λ(n), {(λ(p), λ(o)) | (p, o) ∈ outG(n)}), (1)

where λ is the current partition. The inclusion of the original
color of n is to ensure that the procedure yields progressively
finer partitions. We use this function on a selected subset
of nodes without changing the color of the other nodes.
Formally, the (one step) bisimulation partition refinement
BisimRefineX(λ) on X ⊆ NG is the partition defined as

λ′(n) =

{
recolorλ(n) if n ∈ X,

λ(n) otherwise.
(2)

This partition refinement captures bisimulation when applied
to all nodes with the node labeling function `G defining the
initial partition.

Proposition 1 For any graph G = (NG, EG, `G), the parti-
tion λBisim = BisimRefine∗NG

(`G) captures the maximal bisim-
ulation on G i.e., Align(λBisim) = Bisim(G).

The color assigned to a node is essentially a derivation tree
rooted at the node, and because of the recursive nature of
the bisimulation process, it can be compactly presented as a
DAG and implemented with a simple hashing technique.

Example 2. Figure 4 shows the fixpoint computation of
λBisim on the graph in Figure 2, where colors are presented
using derivation trees. Note that a node with no outgo-
ing edges, in particular a literal or a URI used solely as
a predicate, essentially maintains the same color through
all iterations of the process. For clarity we use only the
original color of such nodes and illustrate the refinement
process only on nodes whose color changes. We use (deriva-

w u b1 b2 b3

λ0: w u b

λ1: w

b

p

u

a

w b

b

q

r p

q

b

b u

r q

b

a

q

λ2: w

b

ub

b

a

p

pr

p

p

u

a

w

b

b

b

a

q

r p

q

p q

b

b
u

a

w b

b

r q

q

r p

q

b

a

q

Figure 4: Fixpoint color computation in Bisim.

tion) trees to represent the colors and point out that every
iteration essentially unfolds by one level the tree from the
previous iteration. Depending on the node the derivation
tree is rooted at the unfolding may yield different results,
and consequently, different derivation trees may be assigned
to nodes that previously had the same derivation tree. For
instance, the nodes b1, b2, and b3 all have initially (λ0)
the same tree, but after the first iteration they are split into
two separate classes. Since the partition λ2 is the same as
the previous partition λ1, the end result is λ1. �

3.3 Deblanking alignment
Deblanking alignment improves on trivial alignment (Sec-

tion 3.1) by using bisimulation on blank nodes:

λDeblank = BisimRefine∗Blanks(G)(`G).

Intuitively, the bisimulation partition refinement assigns to
every blank node a color that characterizes the node by its
contents (the URIs and data values reachable from the node).
Two blank nodes are aligned if they have the same contents.
The deblanking partition defines an equivalence relation that
is similar to bisimulation and captures the essence of the
deblanking process (described in the appendix).

Example 3. Figure 5 shows the final colors of blank nodes
of the graphs in Figure 3 obtained during the iterative re-
finement of deblanking alignment. Derivation trees are used
for colors; in the case of deblanking alignment the trees are
unfolded only at blank nodes. The unfolding halts at URIs
and literals, and in particular, the derivation trees of URIs
and literals consist of a root node alone.

b1 b2 b3 b4 b5

b

b u

r q

b

a

q

b

b v

r q

Figure 5: Colors of blank nodes in Deblank.

As a result both the nodes b2 and b3 are aligned to b4.
On the other hand, the node b1 is not aligned to b5 because
their colors differ. �

The use of BisimRefine determines the identity of a blank
node solely on its contents i.e., the identity of nodes reachable
with the outgoing edges. In general, however, the proposed
framework could easily accommodate approaches that con-
sider the incoming edges or only a selected subset of edges,
such as those determined by the type of a node.

3.4 Hybrid alignment
Hybrid alignment improves on deblanking alignment by

applying bisimulation to unaligned URI nodes. Deblanking
alignment colors those nodes with their URI label; however,
the bisimulation refinement function incorporates this label
in every iteration, and consequently, an unaligned URI can-
not be aligned in this fashion to another unaligned node with
a different URI label. We also note that aligning URI nodes
with different labels could permit aligning previously un-
aligned blank nodes whose color in the deblanking alignment
might incorporate the different URI labels. Therefore, we
begin by modifying the deblanking partition by resetting the
color of unaligned URI and blank nodes to the neutral blank
color: essentially, we place all unaligned non-literal nodes
in the same cluster and then use bisimulation refinement to
define their identity. Formally, for a set of nodes X ⊆ NG
we define an auxiliary function that blanks their colors in
the given partition: Blank(λ,X) = λ′, where

λ′(n) =

{
b if n ∈ X,
λ(n) otherwise.

(3)

We also identify unaligned non-literal nodes:

UN (λ) = Unaligned(λ) \Literals(G) (4)

We define the hybrid partitioning as follows:

λHybrid = BisimRefine∗UN (λDeblank)
(Blank(λDeblank,UN (λDeblank))).

Using λTrivial instead of λDeblank above yields the same result.

Example 4. In Figure 6 we present the final colors of un-
aligned nodes (by Deblank) of the graphs in Figure 3 obtained
during the iterative refinement procedure of the hybrid align-
ment. Again, we represent the colors as trees but note that
technically speaking they are no longer derivation trees be-
cause for unaligned nodes we use the blank label rather than
the label of the node (cf. colors of u and v). Also, the depth
of the trees may be greater than the number of iterations of
the refinement process because for aligned nodes colors from
the deblanking alignments are used, as it is the case with the
colors of nodes b2, b3, and b4. Naturally, the final colors
of nodes u and v coincide and therefore these two nodes are
aligned by Hybrid. Similarly, Hybrid aligns the blank nodes
b1 and b5. �

u v b1 b5

b

a

w b

b

a

q

r p

q

q

b

b
b

a

w b

b

a

r q

q

r p

q

q

Figure 6: Colors of selected nodes in Hybrid.

Finally, we point out that because the constructed parti-
tions have been defined by improving one on another, the
corresponding alignments create a (proper) hierarchy:

Align(λTrivial) ⊆ Align(λDeblank) ⊆ Align(λHybrid).

4. SIMILARITY ALIGNMENT
In this section we outline a method of further refining the

bisimulation-based Hybrid alignment with pairs of similar
nodes as identified by a distance function. More precisely,
we define two distance functions on nodes: σEdit, which de-
fines an alignment robust under editing operations but is
computationally expensive, and σOverlap, which approximates
σEdit and scales well in practice. We continue to work with a
single combined graph G = (NG, EG, `G) that is the disjoint
union of the source graph G1 = (N1, E1, `1) and the target
graph G2 = (N2, E2, `2).

4.1 Node distance functions
We investigate a natural manner of aligning nodes using the

standard notion of a distance function σ : N1 ×N2 → [0, 1]
in which similar nodes have a low value of σ. Although
we do not require σ to satisfy the triangle equality, we will
only work with metrics as they are sometimes used to repre-
sent distances in a graph. When we wish to combine (add)
distance values, in order that the result is again in [0, 1],
we use an infix addition operator ⊕ : [0, 1] × [0, 1] → [0, 1].
This operator can have a number of natural definitions,
the only requirement being compatibility with the trian-
gle inequality: σ(n, z) ⊕ σ(z,m) ≤ σ(n,m) for any nodes
n,m, z. We shall use a rudimentary definition of this opera-
tor: x⊕ y = min{x+ y, 1} for x, y ∈ [0, 1].

The alignment defined by a node distance function σ is
additionally parameterized by a threshold value θ ∈ [0, 1]:

Alignθ(σ) = {(n,m) ∈ N1 ×N2 | σ(n,m) ≤ θ}.

Alignments captured with distance functions do not necessar-
ily have the cross-over property, and are more expressive than
alignments captured with partitions; but for every partition
there exists a distance function and threshold that defines
the same alignment.

4.2 Edit distance alignment
We define a natural node distance function σEdit that at-

tempts to address two important aspects of evolving RDF
data sets: 1) editing changes in the literal values, 2) editing
changes in the structure of the graph. In essence, σEdit at-
tempts to refine the Hybrid alignment by incorporating string
edit distance on literal values and graph edit distance on

non-literal nodes while iteratively propagating the distances
throughout the graph. We omit its formal definition and
illustrate its workings on an example below.

Example 5. Consider the two RDF graphs G1 and G2 pre-
sented in Figure 7, where we present the distance between
pairs of nodes. For clarity, we indicate the distances be-
tween closest pairs of nodes. Because σEdit refines the Hybrid

G1

w

u

v

“abc”

“c”

“b”

“a”

r

q

p

p

p

p

q

G2

w′

u′

v′

“ac”

“c”

“a”

r

q

p

p

p

q

0

0

Hybrid
alignment

1
3

string edit
distance

1
3

1
6

1
4

distance
propagation

Figure 7: Alignment with the distance function σEdit.

alignment, the distance between any pair of aligned nodes
aligned by the Hybrid partition is 0, as it is the case with
the trivially aligned literal nodes “c” or with the trivially
aligned URIs used as edge labels. On pairs of unaligned
literal nodes we use a string edit distance. For instance, the
distance between the nodes “abc” and “ac” is 1

3
because

they differ by the presence of b and the length of both is
bounded by 3. Note that σEdit is 1 on any other pair that
involves at least one node aligned by the Hybrid partitioning.
For example, the distance between “a” and “ac” is 1 even
though the (normalized) edit distance is 1

2
.

On unaligned non-literal nodes we propagate the distance
established on other nodes. For example, the distance be-
tween v and v′ is the average of the distances between the
pairs of nodes on the edges with corresponding labels. Be-
cause a node may have more than one edge with a given label,
this process consists of finding a matching that maximizes
this average. Furthermore, when the numbers of edges with a
given label are different the matching accounts for the differ-
ences in a manner consistent with graph edit distance. The
distance between u and u′ is 1

3
because the main difference

is in the presence of the outgoing edge to a node labeled
with “b” and the size of their outbound neighborhood is
bounded by 3. Finally, an optimal matching is found using
the Hungarian algorithm [9]. �

The main obstacle to the practical use of σEdit is the signif-
icant computational cost of constructing σEdit: we need to
materialize a matrix whose size is quadratic in the size of
the input graphs, which makes this approach scale poorly.
Furthermore, lower bounds on computing edit distance on
strings [19] and graphs [7] suggest that the limitations on

practical use of σEdit may be fundamental. These observa-
tions motivate us to investigate a heuristic approach that
approximates σEdit and has better computational properties.

4.3 Weighted partitions
We begin with a simple intuition: for aligning nodes with

σEdit we do not necessarily need to know the distance between
every pair of nodes but only wish to find pairs of nodes that
are close to each other. In the context of alignment of
evolving RDF, it is natural to expect the number of such
pairs to be relatively low and more manageable. Ideally, the
alignment is a one-to-one correspondence between the source
and the target nodes, which translates to a linear number
of pairs of close nodes. We contrast it with the unlikely
case of a complete bipartite alignment, where every source
node is aligned to every target node, which yields a quadratic
number of pairs of close nodes and has space requirements on
a par with materializing σEdit. Encouraged by the very good
performance of the basic refinement algorithm, we investigate
a generalization of bisimulation geared towards clustering
nodes that are in close proximity.

We begin by generalizing partitions by assigning to every
node of a cluster the distance from the center of the cluster.
By using the triangle inequality, the distance from the center
allows us to estimate the relative distance between any pair
of nodes in the same cluster. Formally, a weighted partition
of a graph G is a pair ξ = (λ, ω), where λ : NG → C is a
partition of G and ω : NG → [0, 1] is a weight function. A
weighted partition ξ = (λ, ω) defines the following distance
function (for n,m ∈ NG)

σξ(n,m) =

{
ω(n)⊕ ω(m) if λ(n) = λ(m),

1 otherwise.
(5)

Naturally, the alignment defined by the weighted partition ξ
w.r.t. the threshold value θ ∈ [0, 1] is

Alignθ(ξ) = {(n,m) ∈ N1×N2 | λ(n) = λ(m), ω(n)⊕ω(m) < θ}.

We propose a method for constructing a weighted partition
that approximates σEdit and thus produces an alignment that
approximates Alignθ(σEdit).

Example 6. Figure 8 presents a weighted partition of the
graph from Figure 7 that captures the essence of the align-
ment defined with σEdit. For instance, the distance between

w

u

v

“abc”

“c”

“b”

“a”

r

q

p

p
p

p
q

w′

u′

v′

“ac”

“c”

“a”

r

q

p

p

p

q2
9

1
9

0
0

0
0

0
1
3 0

1
9

1
18

2
9

1
36

Figure 8: Weighted partition approximating σEdit.

the nodes “abc” and “ac” is 2
9
⊕ 1

9
= 1

3
and the distance

between nodes the nodes w and w′ is 2
9
⊕ 1

36
= 1

4
. However,

the two node distance functions are not equal: for the nodes
u and v′ the weighted partition defines distance 1 because
those nodes are in different clusters while σEdit gives this pair
a lower value of 1

3
because one outgoing edge can be matched.

�

We view the weight function ω of a weighted partition ξ =
(λ, ω) only as a measure of uncertainty that a given node n
has been correctly assigned to its the cluster (labeled) λ(n).
The node n belongs to the cluster λ(n) even for the extreme
weight value ω(n) = 1 and the weight value is only taken
under consideration during the construction of the alignment.
While the precise threshold value θ identifies the sets of
nodes unaligned by Alignθ(ξ), for simplicity of notations we
use the same definitions of unaligned nodes as for standard
partitions: a node of one graph is unaligned if it belongs
to a class with no nodes of the opposite graph. We remark
that our methods can be easily extended to incorporate the
threshold value in identifying unaligned nodes.

4.4 Enrichment
Our approach can be described as a simple iterative pro-

cedure: start with an initial weighted partition and while
there exist previously unaligned but close and easily identifi-
able pairs of nodes, enrich the partition correspondingly and
propagate this information to other unaligned nodes. The
exact method used to identify pairs of close nodes typically
depends on the precise nature of data and later on we propose
one generic method. Here, we present a general approach of
enriching a given weighted partition with newly discovered
pairs of close nodes.

We assume a weighted partition ξ = (λ, ω) of G, and
the newly discovered pairs of close nodes are given in the
form of a weighted bipartite graph H = (A,B,M, d), where
A ⊆ Unaligned1(ξ) is a subset of unaligned source nodes,
B ⊆ Unaligned2(ξ) is a subset of unaligned target nodes,
M ⊆ A × B is the set of newly discovered close pairs of
nodes, and d : M → [0, 1] is a distance function on those
pairs of nodes. We view H as an undirected graph and
w.l.o.g. assume that no node in H is isolated i.e., every node
in H is connected to at least one node (isolated nodes can
be removed from consideration). For two arbitrary nodes v
and w of H, we use d∗(v, w) the length of the shortest path
connecting v and w calculated using ⊕, and 1 if v and w
are not connected. A number of ways of enriching ξ with H
can be envisioned, and we use a rather simple one because
in practice H will have a very sparse structure (close to a
one-to-one correspondence).

In the first step we decompose H into a maximal set of
disjoint connected components X = {X1, . . . , Xk}, where two
nodes belong to the same component if and only if they are
connected. Because we work with H with no isolated nodes,
every component Xi contains both nodes from A and B. To
incorporate these components into the weighted partition
we need to assign to every element of each component a
weight value that is consistent with the distances in H i.e.,
we need to define a function w :

⋃
X → [0, 1] such that

for any Xi, any a ∈ A ∩ Xi, and any b ∈ B ∩ Xi we have
d∗(a, b) ≤ w(a)⊕w(b). We propose a simple approach where
for every source node in a component we take the half of the
maximum distance to any target node in the same component
and vice versa. Now, the enrichment of ξ by H is a weighted

coloring Enrich(ξ,H) = (λ′, ω′), where

λ′(n) =

{
Xi if n ∈ A ∪B and n ∈ Xi,
λ(n) otherwise

ω′(n) =

{
w(n) if n ∈ A ∪B,

ω(n) otherwise.

4.5 Propagation
Once the newly discovered pairs of close nodes have been

incorporated into the weighted coloring, we propagate this
new information in a manner inspired by the coloring refine-
ment procedure that allows to identify further close nodes.

The weight of the new color will be an average of the
weights of the colors of outbound nodes that constitute the
new color:

reweightω(n) =
⊕{

ω(p)⊕ ω(o)

|outG(n)|

∣∣∣∣ (p, o) ∈ outG(n)

}
,

where ω is the current weight function of a weighted par-
tition. This function is defined only for nodes having one
or more outgoing edges; for a node n ∈ NG with no out-
going edges we set reweightω(n) = ω(n). Analogously to
the refinement procedure, we recolor only a selected subset
of (previously unaligned) nodes. We define one-step refine-
ment of a weighted coloring ξ = (λ, ω) on a set of nodes
X ⊆ NG as BisimRefineX(ξ) = (λ′, ω′) where λ′ is defined
as for non-weighted partitions in (2), and

ω′(n) =

{
reweightω(n), if n ∈ X,
ω(n) otherwise.

We shall apply this refinement operation iteratively until the
partition no longer changes and the weights stabilize i.e., the
weight assigned to any node changes by less than some fixed
small value ε > 0. The property that ensures stabilization
is that the initial weights of the nodes in X will all be 0,
and will only increase during the refinement process We use
BisimRefine∗X(ξ) to denote the weighted partition obtained
with sufficient iterations of BisimRefine to ensure a fix-point
partition (cf. Definition 4) and stabilization of the weight
function. The exact definition is presented in appendix of
the complete version of the paper.

Because we use propagation extensively we introduce a
convenient shorthand Propagate(ξ) that propagates the align-
ment information in a weighted partition ξ = (λ, ω) to un-
aligned nodes. The set of unaligned non-literal nodes UN (ξ)
is defined as for non-weighted partitions (4) and we extend
the blank-out operation to weighted partitions: for a set
of (unaligned) nodes X ⊆ NG let Blank(ξ,X) = (λ′, ω′),
where λ′ is defined as for non-weighted partitions (3) and
(for n ∈ NG)

ω′(n) =

{
0 if n ∈ X,

ω(n) otherwise.

Finally, we define

Propagate(ξ) = BisimRefine∗UN (ξ)(Blank(ξ,UN (ξ))).

There is a natural relationship between the propagation and
the hybrid partition obtained with the coloring refinement al-
gorithm: Propagate((λTrivial, 0)) = Propagate((λDeblank, 0)) =
(λHybrid, 0), where 0 is a constant weight function that assigns
0 to every node.

4.6 Overlap heuristic
Similar nodes are identified with a heuristic based on the

overlap measure combined with inverted indexes and identifi-
cation of least frequent elements as outlined in Algorithm 1.
Recall that the overlap measure between two sets of objects
O1 and O2 is defined as the fraction of elements in common
over the number of all elements:

overlap(O1, O2) =
|O1 ∩O2|
|O1 ∪O2|

,

This similarity measure has a natural distance counterpart
that measures the fraction of elements present in exactly one
of the sets (÷ is the symmetric difference operator):

diff (O1, O2) =
|O1 ÷O2|
|O1 ∪O2|

= 1− overlap(O1, O2),

Note that diff (X,X) = 0 but since the above formula is
valid only if one of the sets O1 and O2 is nonempty, we set
diff (∅, ∅) = 0 and overlap(∅, ∅) = 1.

Algorithm 1 Overlap heuristic.

function OverlapMatch(A,B, θ, char , dist)
Input: A,B – two (disjoint) sets of nodes

θ ∈ [0, 1] – similarity threshold value
char : A∪B → P(O) – node characterizing function
σ : A×B → [0, 1] – similarity measure

Output: (A,B,M,w) – weighted bipartite graph
1: O :=

⋃
{char(n) | n ∈ B}

2: Inv := hashtable()
3: freq := hashtable()
4: for o ∈ O do
5: Inv [o] := {n ∈ B | o ∈ char(n)}
6: freq [o] := |Inv [o]|
7: M := ∅
8: w := hashtable()
9: for n ∈ A do

10: C := ∅
11: (o1, . . . , ok) := sort(char(n), freq) //freq[oi] ≤ freq[oi+1]

12: for i ∈ {1, . . . , dk ∗ θe} do
13: for m ∈ Inv [oi] do
14: if overlap(char(n), char(m)) ≥ θ then
15: C := C ∪ {m}
16: for m ∈ C do
17: if σ(n,m) < θ then
18: M := M ∪ {(n,m)}
19: w(n,m) := σ(n,m)
20: return (A,B,M,w)

Our approach (Algorithm 1) identifies candidate pairs of
nodes by representing a node n with a set of objects char(n)
that characterize n in a manner exhibiting a high coincidence
between σdist(n,m) < θ and diff (char(n), char(m)) < θ.
Intuitively, the more similar two nodes are the more objects
they have in common. We use inverted indexes to identify
pairs of nodes that have the same object in common and
we use frequency counts to use the less frequent, and thus
more discriminating, objects when identifying the set C of
potentially close nodes. Additionally, we use the threshold
value θ to inspect only a fraction of all objects char(n)
characterizing the node n since this fraction must contain
objects of any node m that has overlap above θ. Every
candidate pair is then tested with a distance function σ that

filters out the wrong candidates (this function needs not have
the same definition as σdist).

4.7 Overlap alignment
We use the overlap heuristic to construct a weighted par-

tition ξOverlap (Algorithm 2) and the corresponding overlap
alignment. It defines a distance measure σOverlap that for the
purposes of alignment closely captures the edit distance σEdit.
First, literal nodes are characterized with the function split
that takes the label of the literal node and splits it into a set
of words and the similarity measure σLiterals is defined in the
same way as σDist on literal nodes. Then, for a given weighted
partition ξ = (λ, ω), non-literal nodes are characterized with
the set of colors of their outgoing edges

out-colorξ(n) = {(λ(p), λ(o)) | (p, o) ∈ outG(n)}.

The distance function on non-literals σξNL is defined in a
manner that captures the weight of the optimal (Hungarian
algorithm) matching among the outgoing edges of two nodes
given that only the weight function is at our disposal. For
n ∈ N1 and m ∈ N2 the value of σNL

ξ (n,m) is defined as⊕{
σξ(p1, p2)⊕ σξ(o1, o2)

f

∣∣∣∣ ((p1, o1), (p2, o2)) ∈M
}
⊕ R

f
,

where σξ is the distance on nodes induced by ξ as defined
in (5), f = max{|out-colorξ(n)|, |out-colorξ(m)|}, M is a
binary relation coupling the outgoing edges of n and m with
the same color and having the same position in the list of
outgoing edges with the same colors ordered by their weight,
and R is the number of outgoing edges of n and m that
are not coupled in M (when one node has more outgoing
edges of a given color than the other node). Interestingly,
computing M and R can be easily done without the use of
the Hungarian algorithm. The overlap heuristic is applied
iteratively until no further close pair of non-literal nodes can
be found.

Algorithm 2 Overlap weighted partition.

function Overlap(G, θ)
Input: G = G1]G2 – combined graph
Parameter: θ ∈ [0, 1] – similarity threshold value
1: ξ0 := (λHybrid, 0)
2: A0 := Unaligned1(ξ0) ∩ Literals(G1)
3: B0 := Unaligned2(ξ0) ∩ Literals(G2)
4: H0 := OverlapMatch(A0, B0, θ, split , σLiterals)
5: i := 0
6: do
7: i := i+ 1
8: ξi := Propagate(Enrich(ξi−1, Hi−1))
9: Ai := Unaligned1(ξi) \Literals(G1)

10: Bi := Unaligned2(ξi) \Literals(G2)
11: Hi := OverlapMatch(Ai, Bi, θ, out-colorξi , σ

NL
ξi

)
12: until Hi has no edges
13: return ξi

The fundamental result is that the overlap alignment only
aligns pairs of nodes that are similar and is stated below.

Theorem 1 Let ξOverlap = (λOverlap, ωOverlap) be the overlap
alignment of G1 = (N1, E1, `1) and G2 = (N2, E2, `2). Then,
for any n ∈ N1 and m ∈ N2, if λOverlap(n) = λOverlap(m), then
σEdit(n,m) ≤ ωOverlap(n) ∗ ωOverlap(m).

5. EXPERIMENTAL RESULTS
In this section we report on experimental evaluation of

the proposed solutions on three practical data sets: EFO
– Experimental Factor Ontology [11] supported by the Eu-
ropean Bioinformatics Institute, GtoPdb – The Guide to
Pharmacology database [4] supported by the International
Union of Pharmacologists and the British Pharmacological
Society, and a subset of DBpedia with Wikipedia category
information.

A brief word about the first two databases. EFO provides
a systematic description of many experimental variables
available in other databases and combines parts of several
biological ontologies. It is expressed in OWL, which is in
turn reasonably directly expressed in RDF. GtoPdb is a
relational database that contains curated information from
hundreds of experts about drugs in clinical use and some
experimental drugs, together with information on the cellular
targets of the drugs and their mechanisms of action in the
body. We converted GtoPdb into RDF using a standard
(W3C recommended) approach [18]. Both databases are
evolving; new versions are released every few months. Both
databases are usually viewed through a Web interface and
despite their internal representions have a similar general
nature consisting of classification hierarchies along with a
rich annotation. However their representation in RDF is very
different. For example, in EFO the notion of a subclass is
directly represented, while in GtoPdb it is inferred from the
relational database.

5.1 Experimental Factor Ontology (EFO)
In Figure 9 we present node and edge counts of ten versions

of the Experimental Factor Ontology (versions 2.34 through
2.44; 2.40 not accessible). We point out that literals comprise

1 2 3 4 5 6 7 8 9 10

Version

50K

100K

150K

75K

150K

225K

E
d
g
es

B
la
n
k
s

U
R
Is

L
it
er
a
ls

Figure 9: EFO dataset versions.

over 75% of the contents of every version. While the number
of URIs is generally proportional to the total number of
nodes (approx. 10%), the number of blank nodes fluctuates
quite significantly 7–15%. After a closer inspection we found
that the fluctuations are due to duplication (bisimilar blank
nodes) and normalized counts of blank nodes do not fluctuate
but grow steadily.

We analyzed the alignments obtained with the presented
methods between any pair of versions of EFO. We measured
the number of aligned edges – the results are virtually the
same if we measure the number of aligned nodes. For the
trivial and deblanking alignment in Figure 10 we report the
ratio of the number of aligned edges to the total number of

edges in both graphs (edges using precisely the same identi-
fiers are counted precisely once). The diagonal of the matrix

Trivial

1 2 3 4 5 6 7 8 9 10

Source version

1
2
3
4
5
6
7
8
9

10

T
a
rg

et
v
er

si
o
n

0.4

1.0 Deblank

1 2 3 4 5 6 7 8 9 10

Source version

1
2
3
4
5
6
7
8
9
10

T
a
rg

et
v
er

si
o
n

Figure 10: Trivial and Deblank alignments (EFO).

is the result of self-alignment, the alignment of a version with
itself, and ideally we wish it to be a complete alignment with
ratio equal to 1, as it is for the deblanking alignment. The
ratios for trivial alignment are significantly worse because
of the impact of blank nodes that are not aligned. Overall,
we observe an expected descending gradient from the diag-
onal towards the upper left point of the matrix, except for
version 3 due to fluctuations in the number of blanks. This
gradient has a natural explanation: the further apart the
two aligned versions are, the more significant changes they
have undergone, and consequently, less edges can be aligned.

The relative improvement offered by the hybrid and over-
lap alignments is subtle, and to highlight it in Figure 11
we show the absolute number of edges that are addition-
ally aligned by the hybrid alignment (compared with the
deblanking alignment) and the overlap alignment (compared
with the hybrid alignment). In both cases, the improve-

Hybrid vs Deblank

1 2 3 4 5 6 7 8 9 10

Source version

1
2
3
4
5
6
7
8
9

10

T
a
rg

et
v
er

si
o
n

0

12K Overlap vs Hybrid

1 2 3 4 5 6 7 8 9 10

Source version

1
2
3
4
5
6
7
8
9
10

T
a
rg

et
v
er

si
o
n

Figure 11: Hybrid and Overlap alignments (EFO).

ments come mainly from ontology changes manifested by
change of URI prefix e.g., http://purl.org/obo/owl/ to
http://purl.obolibrary.org/obo/. This process can be
quite straightforward e.g., a large number of URIs using old
prefix in version 7 is replaced by URIs with new prefix in
version 8. This change also involves changes in the contents
of the affected nodes, which are captured with the overlap
alignment. Ontology change may take more time with URIs
disappearing in between: a number of URIs using the old
prefix in the first two versions are removed in version 3, and
then reappear in version 5 with the new prefix.

Because our methods focus on the outgoing neighborhood
of a node, they make errors by incorrectly aligning URIs

that are used as predicates only: these URIs typically are
present as subject in one triple that declares the type of the
URI (and uses rdf:type as predicate). The number of such
incorrectly aligned predicates is relatively small (< 15). A
better solution would identify URIs that are predominantly
used as predicates and use a different refinement process, for
instance, one that incorporates the colors of the subject and
the object in any triple that uses the given predicate.

Finally, we found the quality of the hybrid and overlap
alignments to be overall satisfying: very few URIs under-
going changes are missed and no URIs are aligned in error.
Unfortunately we cannot precisely evaluate it because we
lack the appropriate ground truth for the EFO dataset and
we present a more detailed discussion in the appendix of
the complete paper. In the following subsection, we run
experiments on a dataset for which the ground truth is easily
obtained.

5.2 Guide to Pharmacology database (GtoPdb)
We used 10 versions of the GtoPdb relational database,

which we exported to RDF following the W3C Direct Map-
ping recommendation [18], using the D2RQ platform. The
mapping works as follows: 1) every tuple is identified by
a URI which is constituted from a given URI prefix, the
table name, and the attribute values of the primary key,
2) (non-referential) value attributes are translated to edges
consisting of the tuple URI, the attribute name and a literal
for the attribute value, 3) referential attributes are translated
to edges pointing to the URI of the referred tuple. While
this experimental setting has been designed to evaluate the
hybrid and overlap alignments, we believe it captures a com-
mon situation in which a relational database is exported to
RDF at different times by different services using similar
export schemes (e.g., the default W3C Direct Mapping con-
figuration). Node and edge counts are shown in Figure 12.
These graphs do not have any blank nodes, and the number
of literals is slightly larger than the number of URIs.

1 2 3 4 5 6 7 8 9 10

Version

0.25M

0.5M

0.75M

1.0M

1.5M

3.0M

4.5M

6.0M

E
d
g
es

U
R
Is

L
it
er
a
ls

Figure 12: GtoPdb dataset versions.

To focus our study on the hybrid and overlap alignments,
we export every version with a different URI prefix. Be-
cause there are no common URIs and no blank nodes, the
trivial and deblanking alignments align no non-literal nodes.
However, since the URI prefixes are known to us and the
key values in the GtoPdb are generally persistent (the same
entity does not change its key over different versions), we
are able to identify a precise alignment between any pair
of versions that will serve as ground truth (GtoPdb). For

example, the calcitonin ligand is identified in all versions as
ligand 685. In version 1 this is given a URI http://gtopdb.
org/ver1/ligand685 and in version 2 http://gtopdb.org/

ver2/ligand685.
In Figure 13 we show the number of aligned nodes in

all pairs of consecutive versions by the hybrid and overlap
alignment together with the number of nodes aligned by
ground truth as well as the total number of nodes (Total)
present in both versions. All counts are free of duplicates:

1 2 3 4 5 6 7 8 9 10

Alignment between versions

0.25M

0.5M

0.75M

1.0M

Hybrid

Overlap

GtoPdb

Total

Figure 13: Alignments (GtoPdb).

any two URIs coming from two versions but representing
the same tuple are counted as one. Comparing the values of
Total and GtoPdb allows us characterize the degree of relative
change between versions. In particular between versions 3
and 4 these two values are most different, which indicates a
large number of changes (mainly insertions of new nodes).
On the other hand, the changes are minute between versions
7 and 8. In general, the values of the overlap alignment are
significantly closer to GtoPdb than are those of the hybrid
alignment. This suggest that the hybrid alignment is sensitive
to changes as they propagate throughout the graph, while
overlap may better handle changes.

We can now use the ground truth (GtoPdb) to substanti-
ate these observations and to evaluate the precision of the
alignments. In the ground truth a node is aligned to at
most one other node, while the overlap and hybrid alignment
may map a node to multiple nodes. Consequently, for every
alignment we identify the numbers of: exact matches – any
node that is aligned to the same set of nodes as the ground
truth, inclusive matches – any node that is aligned to a set
of nodes that properly includes the node indicated by the
ground truth, missing matches – any node that is mapped
to a set of nodes that does not include the node indicated
by the ground truth, and false matches – any node that is
aligned to a nonempty set of nodes while the ground truth
does not align the node to any node. We present the results
in Figure 14. Clearly, the results confirm that the overlap
significantly outperforms the hybrid alignment. We point out
that the relative change between versions (as we read it by
comparing the values GtoPdb and Total in Figure 13) is not
a good indicator of the performance of the hybrid alignment
e.g., the hybrid exhibits better precision when aligning ver-
sions 3 and 4, where the relative change is significant, than
it does when aligning versions 5 and 6, where the relative
change is smaller. Interestingly, for the overlap alignment
there is a dependence between the relative change between
two versions and the precision of the overlap alignment. In
particular, the overlap alignment between versions 3 and 4

1 2 3 4 5 6 7 8 9 10

Version

exact inclusive false missing

Hybrid

Overlap

Figure 14: Alignment precision (GtoPdb).

has the worst precision overall and even aligns incorrectly
a significant number of nodes. Our investigations of why
nodes are falsely aligned indicate that it mainly happens to
nodes that are inserted and deleted between the two versions
and that the main reason of false alignment of a node is the
number of previously existing nodes present in its outbound
neighbourhood. For instance, out of 177K inserted URIs 31K
are falsely aligned, and in case of the falsely aligned URIs on
average only 9% of outbound nodes are newly inserted nodes
while in case of inserted nodes that are correctly unaligned
this average is higher and reaches 31%.

In Figure 15 we further investigate how the precision can
be controlled with the threshold value used by the overlap
alignment (between versions 3 and 4) The findings are as

0.35 0.45 0.55 0.65 0.75 0.85 0.95

Threshold value θ

exact inclusive false missing

Figure 15: Overlap alignment between versions 3
and 4 (GtoPdb) for different threshold values.

expected: the lower the threshold value the lower the number
of missing matches but also the higher number of false and
inclusive matches. The number of exact matches reaches
maximal value at threshold equal 0.65.

5.3 DBpedia
To evaluate scalability of our methods, we report in Fig-

ure 16 the running times on a subset of DBpedia contain-
ing category information (including hierarchical information
and Wikipedia article categorization), versions 3.0 through
3.5. We ran our experiments on a Intel Xeon server (E5-
2690@3.0GHz) with 375 GB RAM, running SL6 (kernel
2.6.32). Our (single-thread) implementation was in Python
2.7. The RDF graphs progressively grow from 2.6M nodes
and 7.6M edges to 4.2M nodes and 13.7M edges. The general
trend appears proportional to the size of the input graphs
with fluctuations explained by differences in the number of
overlapping nodes between two consecutive versions. Further-
more, the execution times are in line with those presented
in [16], which suggest that our methods should scale to larger
datasets, using methods such as MapReduce.

6. CONCLUSIONS AND FUTURE WORK
We have presented an approach of identifying nodes cor-

responding to the same entity in different versions of the

1 2 3 4 5 6

Version

5M

10M

15M

30

60

90

120

T
ri
p
le
s

U
R
Is

L
it
er
a
ls

T
ri
vi
a
l

H
yb

ri
d

O
ve
rl
a
p

E
x
ec
u
ti
o
n
ti
m
e
(s
ec
.)

Figure 16: Evaluation time on a subset of DBpedia.

same graph, a task whose importance has recently been iden-
tified [10]. Our approach is based on the classical notion
of bisimulation, which defines the identity of a node based
on the identity of its outbound neighborhood and is partic-
ularly suited to align the nodes of two graphs that follow
the same structure, evolving RDF being one such real-life
scenario. We have also proposed a generalization allowing to
approximate similarity measures on nodes without incurring
the high complexity of computing such measures, a matter
of obvious importance when handling large RDF graphs.

While our methods are relatively straightforward, they
have been designed with simplicity and possible extensions
in mind. In the future, we would like to explore variants
of our approach where only selected parts of the outbound
neighborhood are used, for instance specified by a notion of
a key for graph databases, possibly allowing to align nodes
of graphs following different structure. Also better alignment
could potentially be obtained by using not only the contents
of a node but also its context, the nodes from which the given
node can be reached, as well as handling appropriately the
nodes used as predicates. Our experiments show, however,
that the methods based on the contents of a node perform
very well in the scenario of evolving RDF database.

An interesting question arises: can the (constructed) align-
ments be used to construct compact representations of all
versions of an RDF database? One way of approaching this
would be to decorate triples with intervals that represent
versions where the triple was present. Our preliminary ob-
servations suggest that triples tend to enter and leave with
their subject. Consequently, moving the interval informa-
tion where possible to the subject nodes could offer further
improvements on space requirements.

Acknowledgements We are grateful to Simon Jupp and
Tony Burdett for discussions on the EFO database and to
Joanna Sharman and Jamie Davies for the GtoPdb data.
The referees also made many useful comments. This work
was funded by the EU DIACHRON project, the EPSRC
SOCIAM project and NSF IIS 1302212: Citing Structured
and Evolving Data.

7. REFERENCES
[1] P. Buneman, S. Khanna, K. Tajima, and W.-C. Tan.

Archiving scientific data. ACM Transactions on
Database Systems (TODS), 29(1):2–42, March 2004.

[2] F. Emmert-Streib, M. Dehmer, and Y. Shi. Fifty years
of graph matching, network alignment and network
comparison. Information Sciences, 346:180–197, 2016.

[3] A. Y. Halevy, A. Rajaraman, and J. J. Ordille. Data
integration: The teenage years. In International
Conference on Very Large Data Bases (VLDB), pages
9–16, 2006.

[4] A. J. Harmar et al. IUPHAR-DB: the IUPHAR
database of G protein-coupled receptors and ion
channels. Nucleic acids research, 37(suppl
1):D680–D685, 2009.

[5] A. Hogan, M. Arenas, A. Mallea, and A. Polleres.
Everything you always wanted to know about blank
nodes. Web Semantics: Science, Services and Agents
on the World Wide Web, 27:42–69, 2014.

[6] X. Huang. A lower bound for the edit-distance problem
under arbitrary cost function. Information Processing
Letters, 27(6):319–321, 1988.

[7] D. Justice and A. Hero. A binary linear programming
formulation of the graph edit distance. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 28(8):1200–1214, 2006.

[8] H. Köpcke and E. Rahm. Frameworks for entity
matching: A comparison. Data and Knowledge
Engineering, 69(2):197–210, 2010.

[9] H. W. Kuhn. The hungarian method for the assignment
problem. Naval Research Logistics (NRL), 52(1):7–21,
2005.

[10] C. Lantzaki and Y. Tzitzikas. Tasks that require, or
can benefit from, matching blank nodes. CoRR,
abs/1410.8536, 2014.

[11] J. Malone et al. Modeling sample variables with an
experimental factor ontology. Bioinformatics,
26(8):1112–1118, 2010.

[12] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
flooding: A versatile graph matching algorithm and its
application to schema matching. In International
Conference on Data Engineering (ICDE), pages
117–128, 2002.

[13] R. Paige and R. E. Tarjan. Three partition refinement
algorithms. SIAM Journal on Computing,
16(6):973–989, 1987.

[14] V. Papavasileiou, G. Flouris, I. Fundulaki, D. Kotzinos,
and V. Christophides. High-level change detection in
RDF(S) KBs. ACM Transactions on Database Systems
(TODS), 38(1):1, 2013.

[15] E. Rahm and H. H. Do. Data cleaning: Problems and
current approaches. IEEE Data Engineering Bulletin,
23(4):3–13, 2000.

[16] A. Schätzle, A. Neu, G. Lausen, and
M. Przyjaciel-Zablocki. Large-scale bisimulation of
RDF graphs. In International Workshop on Semantic
Web Information Management (SWIM), page 1. ACM,
2013.

[17] Y. Tzitzikas, C. Lantzaki, and D. Zeginis. Blank node
matching and RDF/S comparison functions. In
International Semantic Web Conference (ISWC), pages
591–607. Springer, 2012.

[18] W3C. A direct mapping of relational data to RDF,
2012. http://www.w3.org/TR/rdb-direct-mapping/.

[19] C.-K. Wong and A. K. Chandra. Bounds for the string
editing problem. Journal of the ACM, 23(1):13–16,
1976.

[20] D. Zeginis, Y. Tzitzikas, and V. Christophides. On
computing deltas of RDF/S knowledge bases. ACM
Transactions on the Web (TWEB), 5(3), 2011.

