A. Arnold, Finite transition systems -semantics of communicating systems. Prentice Hall international series in computer science, 1994.

T. Barros, R. Ameur-boulifa, A. Cansado, L. Henrio, and E. Madelaine, Behavioural models for distributed Fractal components, annals of telecommunications - annales des t??l??communications, vol.5, issue.1, pp.25-43, 2009.
DOI : 10.1007/s12243-008-0069-7

URL : https://hal.archives-ouvertes.fr/inria-00268965

F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov et al., GCM: a grid extension to Fractal for autonomous distributed components, annals of telecommunications - annales des t??l??communications, vol.36, issue.1, pp.5-24, 2009.
DOI : 10.1007/s12243-008-0068-8

URL : https://hal.archives-ouvertes.fr/inria-00323919

L. Henrio, E. Madelaine, and M. Zhang, pNets: An Expressive Model for Parameterised Networks of Processes, 2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, pp.492-496, 2015.
DOI : 10.1109/PDP.2015.70

URL : https://hal.archives-ouvertes.fr/hal-01139432

L. Henrio, E. Madelaine, and M. Zhang, A Theory for the Composition of Concurrent Processes, 36th IFIP Int. Conference on Formal Techniques for Distributed Objects, Components and Systems, 2016.
DOI : 10.1007/978-3-319-39570-8_12

URL : https://hal.archives-ouvertes.fr/hal-01432917

C. A. Hoare and J. He, Unifying Theories of Programming, International Series in Computer Science, 1998.

R. Koymans, R. Shyamasundar, W. De-roever, R. Gerth, and S. Arun-kumar, Compositional semantics for real-time distributed computing, Information and Computation, vol.79, issue.3, pp.210-256, 1988.
DOI : 10.1016/0890-5401(88)90020-X

R. Milner, Communication and Concurrency, 1989.

O. Nierstrasz, Piccola ??? A Small Composition Language, ECOOP'99 Workshops, Panels, and Posters Proceedings. p, p.317, 1999.
DOI : 10.1007/978-0-387-35562-7_1

A. Rajan, S. Bavan, and G. Abeysinghe, Semantics for a Distributed Programming Language Using SACS and Weakest Pre-Conditions, 2006 International Conference on Advanced Computing and Communications, pp.434-439, 2006.
DOI : 10.1109/ADCOM.2006.4289931

A. Schmitt and J. Stefani, The kell calculus: A family of higher-order distributed process calculi Revised Selected Papers, Global Computing, IST/FET International Workshop, pp.146-178, 2004.