Activity recognition with echo state networks using 3D body joints and objects category

Luiza Mici 1 Xavier Hinaut 2, 1 Stefan Wermter 1
1 KT - Knowledge Technology group [Hamburg]
Department of Informatics [Hamburg]
2 Mnemosyne - Mnemonic Synergy
LaBRI - Laboratoire Bordelais de Recherche en Informatique, Inria Bordeaux - Sud-Ouest, IMN - Institut des Maladies Neurodégénératives [Bordeaux]
Abstract : In this paper we present our experiments with an echo state network (ESN) for the task of classifying high-level human activities from video data. ESNs are recurrent neural networks which are biologically plausible, fast to train and they perform well in processing arbitrary sequential data. We focus on the integration of body motion with the information on objects manipulated during the activity, in order to overcome the visual ambiguities introduced by the processing of articulated body motion. We investigate the outputs learned and the accuracy of classification obtained with ESNs by using a challenging dataset of long high-level activities. We finally report the results achieved on this dataset.
Type de document :
Communication dans un congrès
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Apr 2016, Bruges, Belgium. pp.465 - 470, 2016, 〈https://www.elen.ucl.ac.be/esann/index.php?pg=esann16_programme〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01417710
Contributeur : Xavier Hinaut <>
Soumis le : vendredi 16 décembre 2016 - 09:48:17
Dernière modification le : mercredi 28 mars 2018 - 13:24:02

Fichier

Mici_ESANN_2016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01417710, version 1

Collections

Citation

Luiza Mici, Xavier Hinaut, Stefan Wermter. Activity recognition with echo state networks using 3D body joints and objects category. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Apr 2016, Bruges, Belgium. pp.465 - 470, 2016, 〈https://www.elen.ucl.ac.be/esann/index.php?pg=esann16_programme〉. 〈hal-01417710〉

Partager

Métriques

Consultations de la notice

241

Téléchargements de fichiers

80