
HAL Id: hal-01417930
https://inria.hal.science/hal-01417930

Submitted on 16 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How do Developers React to API Evolution? a
Large-Scale Empirical Study

André Hora, Romain Robbes, Marco Tulio Valente, Nicolas Anquetil, Anne
Etien, Stéphane Ducasse

To cite this version:
André Hora, Romain Robbes, Marco Tulio Valente, Nicolas Anquetil, Anne Etien, et al.. How do
Developers React to API Evolution? a Large-Scale Empirical Study. Software Quality Journal, 2016,
�10.1007/s11219-016-9344-4�. �hal-01417930�

https://inria.hal.science/hal-01417930
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

How do Developers React to API Evolution?
a Large-Scale Empirical Study

André Hora · Romain Robbes · Marco Tulio
Valente · Nicolas Anquetil · Anne Etien ·
Stéphane Ducasse

Received: date / Accepted: date

Abstract Software engineering research now considers that no system is an island,
but it is part of an ecosystem involving other systems, developers, and users. When
a framework or a library evolves, its clients often must adapt. For example, client
developers might need to adapt to functionalities, client systems might need to be
adapted to a new API, and client users might need to adapt to a new user interface.
The consequences of these changes are yet unclear: what proportion of the ecosystem
might be expected to react, how long might it take for a change to diffuse in the
ecosystem, do all clients react in the same way? This paper reports an exploratory
study aimed at observing API evolution and its impact on a large software ecosystem,
Pharo, which has about 3,600 distinct systems, and six years of evolution. We analyze
118 API changes in the context of method replacement and suggestion, and answer
research questions regarding the magnitude, duration, extension, and consistency of
such changes in the ecosystem. The results of this study help to characterize the
impact of API evolution in large software ecosystems and provide the basis to better
understand how such impact can be alleviated.

A. Hora
FACOM, Federal University of Mato Grosso do Sul, Brazil
hora@facom.ufms.br
M. T. Valente
ASERG Group, Department of Computer Science (DCC), Federal University of Minas Gerais, Brazil
mtov@dcc.ufmg.br
R. Robbes
PLEIAD Lab, Department of Computer Science (DCC), University of Chile, Santiago, Chile
rrobbes@dcc.uchile.cl
N. Anquetil, A. Etien, S. Ducasse
RMoD Team, Inria, Lille, France
{nicolas.anquetil, anne.etien, stephane.ducasse}@inria.fr



2 André Hora et al.

1 Introduction

As any software system, frameworks evolve over time, and, consequently, client sys-
tems must adapt their source code to use the updated Application Programming
Interface (API). To facilitate this time-consuming task, APIs should be backward-
compatible and include deprecated API elements. In practice, researchers have found
that frameworks are backward-incompatible (Wu et al., 2010) and deprecation mes-
sages are often missing (Robbes et al., 2012; Brito et al., 2016). To support devel-
opers dealing with these problems, some approaches have been developed to help
client developers, for example, with the support of specialized IDEs (Henkel and Di-
wan, 2005), the help of experts (Chow and Notkin, 1996), or the inference of change
rules (Wu et al., 2010; Hora et al., 2012; Meng et al., 2012; Hora et al., 2014; Hora
and Valente, 2015).

Frequently, these approaches are evaluated on small-scale case studies. In prac-
tice, many software systems are part of a larger software ecosystem, which often
exists in organizations or open-source communities (Lungu, 2009). In this context,
it is hard for developers to predict the real impact of API evolution. For example,
API deprecation may affect hundreds of clients, with several of these clients staying
in an inconsistent state for long periods of time or not reacting at all (Robbes et al.,
2012). Thus, the impact of API evolution may be large and sometimes unknown and
managing API evolution is a complex task (Bavota et al., 2013).

To support developers better understand the real impact of API evolution and how
it could be alleviated, software ecosystems should also be studied. In that respect, a
first large-scale study was performed by one of the authors of this paper, Robbes et
al. (2012), to verify the impact of deprecated APIs on a software ecosystem. Re-
cently, Wu et al. (2016) analyzed the impact of type and method changes in the con-
text of Apache and Eclipse ecosystem. However, API evolution is not restricted to
deprecation nor type/method changes. It may imply, for example, a better API design
that improves client code legibility, portability, performance, security, etc. The first
aforementioned study analyzes the adoption of a specific group of changes, methods
annotated as deprecated, but it introduces a bias as developers will probably notice
more readily changes documented and checked by the compiler than changes not
advertised. The second study focuses on fine-grained API changes such as method
parameter removal and loss of visibility. Thus, there is still space for analyzing the
adoption of more generic API changes, i.e., not explicitly marked as deprecated and
not mandatory (but recommended) to be applied by clients.

In this paper, we analyze the impact of API changes in the context of method
replacement and suggestion on a large set of client systems. We set out to discover
(i) to what extent API changes propagate to client systems and (ii) to what extent
client developers are aware of these changes. Our goal is to better understand, at
the ecosystem level, to what extent client developers are affected by the evolution of
APIs. Thus, we investigate the following research questions to support our study:

– Magnitude. RQ1: How many systems react to API changes in an ecosystem?
– Extension. RQ2: How many systems are affected by API changes?
– Duration. RQ3: How long does it take for systems to react and propagate API

changes?



How do Developers React to API Evolution? a Large-Scale Empirical Study 3

– Consistency. RQ4: Do systems react to API changes uniformly? and RQ5: How
followed are API changes by the ecosystem?

In this study, we cover the Pharo1 software ecosystem, which has about 3,600 dis-
tinct systems, and six years of evolution. We extracted 118 (out of 344) API changes
from Pharo Core framework in the context of method replacement (i.e., method a()
must be replaced by b()) and suggestion (i.e., a() should be replaced by b()). We then
investigated the impact of these changes in the ecosystem, which may happen at com-
pile or runtime; in fact, as Pharo is a dynamically typed language, some API changes
will only impact the ecosystem at runtime. Moreover, we investigated the influence
of the time variable on the analysis and contrast our results with the study by Robbes
et al. (2012) on API deprecation to better understand how these two types of API
evolution affect client systems.

This work is an extension of our previous study (Hora et al., 2015b). Specifically,
this study extends the previous one in five points: (1) we provide a new research
question to study API change consistency (RQ5); (2) we provide new observations
on RQ2 to investigate the transition between two software repositories where our case
studies are stored; (3) we provide new data analysis on RQ3 to address API change
propagation time; (4) we extend all research questions to contrast the results provided
by the two analyzed API change types (i.e., method replacement and suggestion);
finally, (5) we extend all research questions with new data analysis to investigate the
influence of the time variable on the analysis.

Therefore, the contributions of this paper are summarized as follows:

1. We provide a large-scale study, at the ecosystem level, to better understand to
what extent clients are impacted by API changes not marked as deprecated.

2. We provide an analysis on the reactions to two distinct types of API changes
(method replacement and suggestion).

3. We provide a comparison between our results and the ones of the previous API
deprecation study (Robbes et al., 2012).

In Section 2, we present the API changes considered in this study. We describe
our study design in Section 3. We present and discuss the observational results in
Section 4. We present the implications of our study in Section 5 and the threats to the
validity in Section 6. Finally, we present related work in Section 7 and we conclude
the paper in Section 8.

2 API Changes

2.1 Definition

In this work, we focus on API changes related to method replacements and sugges-
tions, following the line studied by several researches in the context of framework
migration (Dagenais and Robillard, 2008; Schäfer et al., 2008; Wu et al., 2010; Hora
et al., 2012; Meng et al., 2012; Hora et al., 2014). In the following, we define and
provide examples on the two types of API changes considered in this paper.

1 http://www.pharo.org



4 André Hora et al.

Method replacement: In this type of API change, one or more methods in the
old release of a framework are replaced by one or more methods in the new re-
lease. For example, in a one-to-one mapping, the method LineConnection.end() was
replaced by LineConnection.getEndConnector() from JHotDraw 5.2 to 5.3. In another
case, in a one-to-many mapping, the method CutCommand(DrawingView) was replaced
by CutCommand(Alignment, DrawingEditor) and UndoableCommand(Command) (Wu et
al., 2010). In both examples, the removed methods have not been deprecated; they
were simply dropped, which may cause clients to fail at compile-time and at run-time
if they update to the new release of the framework.

Method suggestion: In this type of API change, one (or more) method in the old
release of the framework is improved, producing one (or more) new method in the
new release. For example, in Apache Ant, the method to close files was improved to
centralize the knowledge on closing files (Hora et al., 2015a), producing a one-to-one
mapping where calls to InputStream.close() should be replaced by FileUtils.close(Input-
Stream). In this case, both solutions to close files are available in the new release,
i.e., both methods can be used. However, the latter is recommended to improve
code maintenance. In the Moose platform2, a convention states that calls to Moose-
Model.root() and MooseModel.add() should be replaced by MooseModel.install() when
adding models. In fact, MooseModel.root() and MooseModel.add() are internal meth-
ods, so they should be avoided by clients. Again, all the methods are available, but
MooseModel.install() is recommended to avoid dependence on internal elements and
to improve code legibility3.

These types of API changes are likely to occur during framework evolution, thus
their detection is helpful for client developers. Recently, researchers proposed tech-
niques to automatically infer rules that describe such API changes (Dagenais and
Robillard, 2008; Schäfer et al., 2008; Wu et al., 2010; Meng et al., 2012; Hora et al.,
2014, 2015a). In this study, we adopt our previous approach (Hora et al., 2014) to
detect API changes, which covers both aforementioned cases.

2.2 Detecting API Changes

In our approach, API changes are automatically produced by applying the association
rules data mining technique (Zaki and Meira Jr, 2012) on the set of method calls that
changed between two revisions of one method. We produce rules in the format old-
call() → new-call(), indicating that the old call should be replaced by the new one.
Each rule has a support and confidence, indicating the frequency that the rule occurs
in the set of analyzed changes and a level of confidence. We also use some heuristics
to select rules that are more likely to represent relevant API changes. For example,
rules can be ranked by confidence, support, or occurrences in different revisions.

More specifically, our approach is composed of two major steps. In the first step,
we extract deltas from revisions in system history. Delta is a set of deleted and added
calls of a method representing the differences between two revisions. Such step is

2 http://www.moosetechnology.org
3 See the mailing discussion in: http://goo.gl/Ul3Sha



How do Developers React to API Evolution? a Large-Scale Empirical Study 5

done once for a system history under analysis. The second step is part of the rule
discovering process. Rules are computed from the extracted deltas and indicate how
calls should be replaced. We then apply association rules to the selected deltas to
discover evolution rules. Please, refer to our previous study (Hora et al., 2014) for an
in-depth description about how the rules are generated.

3 Study Design

3.1 Selecting the Clients: Pharo Ecosystem

For this study, we select the ecosystem built by the Pharo open-source development
community. Our analysis includes six years of evolution (from 2008 to 2013) with
3,588 client systems and 2,874 contributors. There are two factors influencing this
choice. First, the ecosystem is concentrated in two repositories, SqueakSource and
SmalltalkHub, which give us a clear inclusion criterion. Second, we are interested in
comparing our results with the previous work by Robbes et al. (2012) and using the
same ecosystem facilitates this comparison.
The Pharo ecosystem: Pharo is an open-source, Smalltalk-inspired, dynamically
typed language and environment. It is currently used in several industrial and re-
search projects4. The Pharo ecosystem has several important client systems. Pharo
client systems are the ones using APIs provided by the Pharo Core framework (de-
scribed in the next subsection). Comparing to the Eclipse ecosystem, Pharo client
systems would be like plugins, i.e., they are built on top of Pharo and use Pharo
APIs. For example, Seaside5 is a Web-development framework, in the spirit of Ruby
on Rails, for rapid Web prototyping. Moose is an open-source platform for software
and data analysis. Phratch6, a visual and educational programming language, is a port
of Scratch7 to the Pharo platform. Many other systems (3,588 in total) are developed
in Pharo and hosted in the SqueakSource or SmalltalkHub repositories.
The SqueakSource and SmalltalkHub repositories: SqueakSource and Smalltalk-
Hub repositories are the basis for the ecosystem that the Pharo community has built
over the years. They are the de facto official repositories for sharing open-source code
for this community, offering a complete view of the Pharo ecosystem. The Squeak-
Source repository is also partially used by the Squeak open-source development com-
munity. SmalltalkHub was created after SqueakSource by the Pharo community to
improve availability, performance, and confidence. As a consequence, many Pharo
projects migrated from SqueakSource to SmalltalkHub and, nowadays, new Pharo
systems are released in SmalltalkHub.
Transition between SqueakSource and SmalltalkHub: We found that 211 client
systems migrated from SqueakSource to SmalltalkHub while keeping the same name
and copying the full source code history. We count these projects only once: we only

4 http://consortium.pharo.org
5 http://www.seaside.st
6 http://www.phratch.com
7 http://scratch.mit.edu



6 André Hora et al.

kept the projects hosted in SmalltalkHub, which hosts the version under development
and the full code history.

In theory, the migration was done automatically by a script provided by Smalltalk-
Hub developers, thus, keeping the meta-data, such as project name. However, to in-
crease our confidence in the data, we calculated the Levenshtein distance between
the system names in each repository to detect cases of similar but not equal project
names. We detected that 93 systems had very similar names (i.e., Levenshtein dis-
tance = 1). By manually analyzing each of these systems, we detected that most of
them are in fact distinct projects, e.g., “AST” (from abstract syntax tree) and “rST”
(from remote smalltalk). However, 14 systems are the same project with a slightly dif-
ferent name, e.g., “Keymapping” in SqueakSource was renamed to “Keymappings”
in SmalltalkHub. In these cases, again, we only kept the projects hosted in Smalltalk-
Hub, as they represent the version under development and include the full source
code history.

3.2 Selecting the Frameworks: Pharo Core

Pharo Core frameworks: The frameworks on which we applied associations rules
mining to extract the API changes come from the Pharo Core. These frameworks
provide a set of APIs, including collections, files, sockets, unit tests, streams, excep-
tions, graphical interfaces. In fact, they are Pharo’s equivalent to Java’s JDK, which
provides several APIs to handle collections, files, etc. Pharo Core also provides an
IDE (compared to Eclipse), which is available to be used by client systems in the
ecosystem, where clients can build applications on top.

We took into account all the versions of Pharo Core since its initial release, i.e.,
versions 1.0, 1.4, 2.0, and 3.0. We analyzed all the changes between these four re-
leases, because our mining process work at revision level. Table 1 shows the number
of classes and lines of code in each version. The major development effort between
versions 1.0 and 1.4 was focused on removing outdated code that came from Squeak,
the Smalltalk dialect of which Pharo is a fork, explaining the drop in number of
classes and lines of code.

Table 1 Pharo Core versions size.

Version 1.0 1.4 2.0 3.0
Classes 3,378 3,038 3,345 4,268
KLOC 447 358 408 483

Generating a list of API changes: We adopted our previous approach (Hora et al.,
2014), described in Section 2, to generate a list of API changes by mining each con-
secutive revisions. We set out to produce rules with a minimum support of 5 and a
minimum confidence of 50%. The minimum support at 5 states that a rule has a rele-
vant amount of occurrences in the framework revisions and the minimum confidence
at 50% yields a good level of confidence. For comparison, Schäfer et al. (2008) use a



How do Developers React to API Evolution? a Large-Scale Empirical Study 7

confidence of 33% in their approach to detect evolution rules. These minimum values
reduce the number of rules to be manually analyzed.

Our approach produced 344 rules that were manually analyzed with the support
of documentation and code examples to filter out incorrect ones. For example, the
rule SortedCollection.new()→ OrderedCollection.new() (Java’s equivalent to SortedSet
and List) came out from a specific refactoring but clearly we cannot generalize this
change for clients, so this rule was discarded. This filtering produced 148 rules.
Filtering the list of API changes by removing deprecation: Naturally, some of the
API changes inferred by our approach are related to API deprecation. As such cases
were studied by Robbes et al. (2012), they are out of the scope of this paper. For this
purpose, we first extracted all methods marked as deprecated found in the analyzed
evolution of Pharo Core; this produced 1,015 API deprecation. By discarding the API
changes related to API deprecation, our final list includes 118 API changes. Figure 1
shows the confidence distribution of the selected API changes: the 1st quartile is 86%
while the median and the 3rd quartile is 100%. Thus, the selected API changes have
high confidence and are strongly adopted in Pharo Core.

5
0

6
0

7
0

8
0

9
0

1
0
0

Confidence of the

API Changes in Pharo Core

%

Fig. 1 Box plot for the confidence of the selected API changes in Pharo Core.

From these API changes, 59 are method suggestions (i.e., both methods are avail-
able to the clients; cf. Section 2) and 59 are method replacements (i.e., the old method
is removed, so it is not available). Furthermore, 10 out of the 118 API changes in-
volved the evolution of internal APIs of the frameworks. While public APIs are stable,
supported, and documented (i.e., they can be safely used by clients), internal APIs are
unstable and unsupported (i.e., they should not be used by clients because they are
backward incompatible). For example, in Eclipse (and also in Pharo), internal APIs
are implemented in packages with the word “internal”, e.g., org.eclipse.jdt.internal.ui.-
JavaPlugin, while in the JDK, internal APIs are in packages with the prefix “sun”,
e.g., sun.misc.Unsafe (Dig and Johnson, 2005; Businge et al., 2013; Hora et al., 2016).



8 André Hora et al.

In Table 2, we present some examples of API changes. The first API change
improves code legibility, as it replaces two method calls by a single, clearer one. The
second example replaces a method with a more robust one, that allows one to provide
a different behavior when the intersection is empty. The third is a usage convention:
Pharo advises not to use Object.log()-related methods, to avoid problems with the math
log function. Finally, the fourth one represents a class and method replacement due to
a large refactoring: ClassOrganizer.default() does not exist anymore; ideally, it should
have been marked as deprecated.

Table 2 Example of API changes.

id API change (old-call → new-call)
1 ProtoObject.isNil() and Boolean.ifTrue(*) → ProtoObject.ifNil(*)
2 Rectangle.intersect(*) → Rectangle.intersectIfNone(*,*)
3 Object.logCr(*) → Object.traceCr(*)
4 ClassOrganizer.default() → Protocol.unclassified()

Assessing reactions of API changes in the ecosystem: When analyzing the reaction
of the API changes in the ecosystem, we do not consider the frameworks from which
we discovered the API changes, but only the Pharo client systems (i.e., systems build
on top Pharo and using Pharo APIs) hosted at SqueakSource and SmalltalkHub, as
described in Subsection 3.1. To verify a reaction to API change in these systems, we
detect when the change was available. We consider that an API change is available to
client systems from the first revision time stamp it was discovered in the framework.
All commits in the client systems after this time stamp that remove a method call
from the old API and add a call to the new API are considered to be reactions to the
API change.

In this study, we assess commits in the ecosystem that applied the prescribed
API change (i.e., the removals and additions of method call according to the rule
that we inferred). In the API deprecation study (Robbes et al., 2012), the authors
were primarily interested in the removals of calls to deprecated methods, but did not
consider their replacement. Thus, our notion of reaction to API change is more strict
than the one adopted by the deprecation study.

3.3 Presenting the Results

Section 4 presents the results. Each research question is organized in three parts:

1. Results. It answers the research questions and discusses the results.
2. Time-based results. It analyzes the most important results taking into account

the age of the API changes. To perform such analysis, we first sorted the list
of API changes by their introduction date (i.e., first revision time stamp it was
discovered in the framework). We then separated the sorted API changes in two
groups: we classify the half older ones as earlier API changes and the half recent
ones as later API changes. We want to verify whether the age of an API change



How do Developers React to API Evolution? a Large-Scale Empirical Study 9

influences the results. For such comparison, we use the Mann-Whitney test for
assessing whether one of two samples (earlier and later API changes, in our case)
of independent observations tends to have larger values. This test is used when
the distribution of the data is not normal and there is different participants (not
matched) in each sample. As is customary, the tests will be performed at the 5%
significance level. We also report effect size that indicates the magnitude of the
effect and is independent of sample size. Effect size value between 0.1 and 0.3 is
considered small, between 0.3 and 0.5 is medium, and greater than 0.5 is large.

3. Comparison with API deprecation. This part compares our results with the ones
provided by Robbes et al. (2012) on API deprecation to better characterize the
phenomenon of change propagation at the ecosystem level. The comparison is
possible because, in most of the cases, the research questions are equivalent for
both studies.

4 Observational Results

4.1 Magnitude of Change Propagation

RQ1. How many systems react to the API changes in an ecosystem?

Results

In this research question, we observe and compute the frequency of reactions and we
quantify them in number of systems, methods, and developers.

Frequency of reactions. From the 118 API changes, 62 (53%) caused reactions in at
least one client system in the ecosystem while 56 (47%) did not cause any reaction.
Moreover, from these API changes, 5 are internal, meaning client developers also
use internal parts of frameworks to access functionalities not available in the public
APIs. We see in the next research questions that many systems take time to react to
API changes. Thus, some API changes may not have been applied by all systems yet.

These reactions involved 178 (5%) distinct client systems and 134 (4.7%) de-
velopers. We present the distribution of such data (i.e., the API changes that caused
change propagation) in the box plots shown in Figure 2.
Reacting systems. Figure 2a shows the distribution of reacting systems per API
change: the 1st quartile is 1 (bottom of the box), the median is 2 (middle of the
box), the 3rd quartile is 5 (i.e., 25% of the API changes cause reactions in 5 or more
systems, forming the top of the box in the box plot), and the maximum is 11 (i.e., it
marks the highest number of reacting systems that is not considered an outlier, form-
ing the top whisker of the box). In addition, Figure 3 presents the reacting systems
separated by API changes in the context of method suggestion and replacement. The
median reaction is 3 for method suggestion against 2 for method replacement; the 3rd
quartile is 6 against 4. In fact, as observed in the next research question, clients are
more affected by method suggestion, thus, consequently, they are more likely to react
to them, in absolute terms.



10 André Hora et al.

0
1
0

2
0

3
0

4
0

5
0

(a) reacting systems

n
u
m

b
e
r 

o
f 
re

a
c
ti
n
g
 s

y
s
te

m
s

0
5
0

1
0
0

1
5
0

(b) reacting methods

n
u
m

b
e
r 

o
f 
re

a
c
ti
n
g
 m

e
th

o
d
s

0
5

1
0

1
5

2
0

2
5

3
0

3
5

(c) reacting developers

n
u
m

b
e
r 

o
f 
a
ff
e
c
te

d
 d

e
v
e
lo

p
e
rs

Fig. 2 Box plots for (a) systems, (b) methods, and (c) developers reacting to API changes.

method

suggestion

method

replacement

2
4

6
8

1
0

1
2

reacting systems

(method suggestion and replacement)

n
u

m
b

e
r 

o
f 

re
a

c
ti
n

g
 s

y
s
te

m
s

Fig. 3 Box plots for systems reacting to API changes separated by method suggestion and replacement.

Reacting methods. For methods (Figure 2b), the 1st quartile is 2, the median is 6, the
3rd quartile is 17, and the maximum is 39. These results show that for some systems
several of their methods had to change to the same API change: the median system
reaction is 2 while the median method reaction is 6.

Reacting developers. The number of developers impacted by API changes is shown
in Figure 2c, as the number of commit authors that react to the API changes. In this
case, the 1st quartile is 1, the median is 2, the 3rd quartile is 5, and the maximum is 11.
The median at 2 shows that many change propagations involve few developers while
the 3rd quartile at 5 shows that some of them involve several developers. Overall,
the distribution of the number of developers involved in the change is similar to the
number of systems, implying that it is common that only one developer from a given
system reacts to the API changes.



How do Developers React to API Evolution? a Large-Scale Empirical Study 11

Time-based results

The number of reactions in the ecosystem may be also influenced by the age of the
API changes. It is intuitively expected that, in total, an older API change has more
reactions than a recent. In this context, we investigate whether earlier API changes
are the ones with larger propagations.

Figure 4 shows the reacting systems with the API changes that caused change
propagation separated in two groups: earlier changes and later changes. For the earlier
changes, the median is 2, the 3rd quartile is 6.5, and the maximum is 13 whereas
for the later changes, the median is 2, the 3rd quartile is 4, and the maximum is 8.
Comparing both earlier and later gives a p-value > 0.05 and effect size = 0.01. While
the median is equal for both groups, the 3rd quartile and maximum, as expected, show
that earlier API changes have more reactions. Consequently, reactions to more recent
API changes may be yet to come.

earlier changes later changes

0
1

0
2

0
3

0
4

0

reacting systems (time analysis)

n
u

m
b

e
r 

o
f 

re
a

c
ti
n

g
 s

y
s
te

m
s

Fig. 4 Box plots for the reacting systems separated by earlier and later API changes.

Comparison with API deprecation

Our magnitude results are different when we compare to explicit API deprecation.
In the previous study, there was a higher level of reaction to API changes. In the
present study, 62 API changes caused reactions while in the API deprecation case, 93
deprecated entities caused reactions, i.e., 50% more. The median of reactions in our
study is 2, whereas it is 5 in the case of API deprecation. This difference is expected
because deprecated methods produce warning messages to developers while in the
case of API changes no warning is produced.

Another difference relies on the number of developers involved in the reaction.
In our study, it is common that one developer reacts to the API changes while in the
API deprecation study it is more common that several developers of the same system



12 André Hora et al.

react. One possible explanation is again that changes involving deprecated methods
are usually accompanied by warnings, thus they can be performed by any client de-
veloper. In contrast, the API changes evaluated in this work can only be performed
by developers that previously know them. This observation confirms that reacting
to an API change is not trivial, thus, sharing this information among developers is
important.

These results compared to the previous study reinforce the need to explicitly an-
notate API deprecation and changes. More developers gain knowledge of the changes
and more systems/methods are adapted.

4.2 Extension of Change Propagation

RQ2. How many systems are affected by API changes?

Results

In this research question, we investigate all client systems that are affected by API
changes (i.e., that feature calls to the old API) to better understand the extension of the
API change impact: are the affected client systems in fact reacting to API changes?

Table 3 shows that 2,188 (61%) client systems are affected by the API changes,
involving 1,579 (55%) distinct developers. From the 118 API changes, 112 API
changes affected client systems, including the 10 internal ones. In the following, we
analyze this distribution.

Table 3 Number of affected systems, methods, and developers.

Systems Methods Developers

2,188 107,549 1,579

Affected systems and methods. Figures 5a and 5b show the distribution of systems
and methods affected by API changes in the ecosystem. The number of affected sys-
tems and methods are much higher than those that actually react to API changes (as
shown in Figure 2 of RQ1). The 1st quartile of affected systems is 15 compared to
only 1 system reacting (methods: 59 compared to 2). The median of affected systems
by an API change is 56.5 compared to only 2 systems reacting to it (methods: 253
compared to 2). The 3rd quartile of affected systems is 154.5 compared to 5 systems
reacting (methods: 744.5 compared to 17). In addition, we see in Figure 5c the dis-
tribution of systems affected by API changes in the context of method suggestion
and replacement. In this case, the median is 96 for method suggestion against 21 for
method replacement.
Relative analysis. The relative analysis of reacting and affected systems and methods
provides a better view of the impact. In that respect, comparing the ratio of reacting
systems over affected systems gives the distribution presented in Figure 6a, which



How do Developers React to API Evolution? a Large-Scale Empirical Study 13

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

(a) affected systems

n
u
m

b
e
r 

o
f 
a
ff
e
c
te

d
 s

y
s
te

m
s

0
5

0
0

1
0

0
0

1
5

0
0

(b) affected methods

a
ff

e
c
te

d
 m

e
th

o
d

s

method

suggestion

method

replacement

0
1
0
0

2
0
0

3
0
0

4
0
0

(c) affected systems

(method suggestion and replacement)

n
u
m

b
e
r 

o
f 
a
ff
e
c
te

d
 s

y
s
te

m
s

Fig. 5 Box plots for (a) systems, (b) methods affected by API changes as well as (c) systems separated by
method replacement and suggestion.

shows that a low number of systems react: the median is 0%, the 3rd quartile is 3%,
the maximum is 7%. From all affected client systems, only a minority react to API
changes. However, some outliers are found: three API changes were completely ap-
plied by all clients. This happens because they affected few clients, for example, the
method suggestion FSFilesystem inMemory()→ FSFilesystem memory() only affected
two clients and both reacted. Moreover, by performing the same analysis at method
level (Figure 6b), we notice an even more extreme scenario: the median is 0%, and
the 3rd quartile is only 1%. Again, some outliers are found; the top three points on
the boxplot shows ratio of 100%, 85% and 60%, respectively. In addition, Figure 6c
shows the ratio of reacting over affected systems in the context of method suggestion
and replacement. In this case, the median is 0 for method suggestion against 1 for
method replacement while the 3rd quartile is 2 against 4.5. We notice that both ratios
are very low. As API changes about method suggestion are not mandatory to be ap-
plied, their ratio is even lower. In the following, we investigate possible reasons the
low reaction.

0
2
0

4
0

6
0

8
0

1
0
0

(a) reacting vs affected systems

%

0
2
0

4
0

6
0

8
0

1
0
0

(b) reacting vs affected methods

%

method

suggestion

method

replacement

0
2

4
6

8

(c) reacting systems vs affected systems

(method suggestion and replacement)

%

Fig. 6 Box plots for ratios of (a) reacting vs affected systems, (b) reacting vs affected methods, as well as
(c) systems separated by method replacement and suggestion.



14 André Hora et al.

In an ecosystem, a possibly large amount of the systems may be stagnant or even
dead (Robbes et al., 2012). Thus, we first investigate the hypothesis in which systems
that did not react either died before the change propagation started or were stagnant. A
system is dead if there are no commits to its repository after the API change that trig-
gered the change propagation. A system is stagnant if a minimal number of commits
(less than 10) was performed after the API change. Removing dead or stagnant sys-
tems (i.e., keeping live systems only) produces the distribution shown in Figure 7b:
the median is 2.5%, the 3rd quartile is 12%, and the maximum is 27%. Comparing
with the previous analysis, we notice that the 3rd quartile increased from 3% to 12%,
suggesting that in fact some systems may not react because they are stagnant or dead.

0
2
0

4
0

6
0

8
0

1
0
0

(b) reacting vs alive systems

%

(a)

0
2
0

4
0

6
0

8
0

1
0
0

(c) reacting vs alive with 

counter reacting projects removed

%

(b)

Fig. 7 Box plots for ratios of (a) reacting alive systems, and (b) reacting alive systems, removing counter
reactions.

A second reason why a system would not react to a change is when it is using
another version of the framework, one in which the API did not change. It may occur
when a system does not have the manpower to keep up-to-date with the evolution and
freezes its relationship with a version that works (Robbes et al., 2012). To estimate
this effect, we measure the number of systems that actually add more calls to the
old API change, i.e., they are counter-reacting to the API evolution. Removing these
systems from the live ones gives the distribution shown in Figure 7c: the median is
9%, the 3rd quartile is 44%, and the maximum is 100%. This new distribution reveals
that many systems may not update to the new framework versions, even after filtering
out dead, stagnant, and counter-reacting systems. As a result, the effort of migrating
to newer versions becomes more expensive over time due to change accumulation.

To further detect inactive systems, we analyze each repository, SqueakSource and
SmaltalkHub, separately. SmalltalkHub repository was created by the Pharo commu-
nity, so we expect that developers were more active in this repository in the recent
years. In Figure 8, we report the ratio comparisons per repository. Firstly, in the
ratio of reacting and affected systems, shown in Figure 8a, the median is 0%/0%
(for SqueakSource/SmalltalkHub, respectively), the 3rd quartile is 1%/7%, and the
maximum is 2%/16%. Secondly, in the ratio of reacting and live systems, shown in
Figure 8b, the median is 0%/0%, the 3rd quartile is 7%/22%, and the maximum is



How do Developers React to API Evolution? a Large-Scale Empirical Study 15

16%/50%. Finally, in the ratio of reacting and live systems without counter-reacting
systems, shown in Figure 8c, the median is 0%/0%, the 3rd quartile is 22%/50%, and
the maximum is 55%/100%. These results show that the community in SmalltalkHub
is in fact more active, so reactions are more common in this repository.

SqueakSource SmalltalkHub

0
2
0

4
0

6
0

8
0

1
0
0

(a) reacting vs affected systems

%

SqueakSource SmalltalkHub

0
2
0

4
0

6
0

8
0

1
0
0

(b) reacting vs alive systems

%

SqueakSource SmalltalkHub

0
2
0

4
0

6
0

8
0

1
0
0

(c) reacting vs alive with 

counter reacting projects removed

%
Fig. 8 Box plots, separated by repository, for ratios of (a) reacting affected systems, (b) reacting alive
systems, and (c) reacting alive systems, removing counter reactions.

Time-based results

The age of the API changes may also influence the number of affected systems. We
investigate whether earlier API changes affect more systems.

Figure 9 shows the number of affected systems separated in the groups earlier
and later API changes. For the earlier changes, the 1st quartile is 18.5, the median
is 55.5, and the 3rd quartile is 212 while for the later changes, the 1st quartile is
5.5, the median is 59, and the 3rd quartile is 130. Comparing both earlier and later
give a p-value = 0.14 and effect size = 0.13. Earlier API changes affect slightly
more systems. Even if the difference between both groups is small, the number of
potentially affected client systems by the API changes tends to increase over time.
Consequently, as time passes, it will be more complicated for these clients to migrate
to new/better APIs.

Comparison with API deprecation

The presented reacting ratios are very different when compared to the API depreca-
tion study. For the ratio of reacting and affected systems, the 1st quartile is 13%, the
median is 20%, and the 3rd quartile is 31% in the API deprecation case (compared
to 0%, 3%, and 7%, respectively, in our API changes), which confirms the difference
between both types of API evolution. These percentages increase in the other ratio
comparisons. For the ratio of reacting and live without counter-reacting systems, the
1st quartile is 50%, the median is 66%, and the 3rd quartile is 75% for API depreca-
tion (compared to 0%, 9% and 44%, respectively, in our API changes). Clearly, client



16 André Hora et al.

earlier changes later changes

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

affected systems (time analysis)

n
u
m

b
e
r 

o
f 
a
ff
e
c
te

d
 s

y
s
te

m
s

Fig. 9 Box plots for the affected systems separated by earlier and later API changes.

systems react more to API deprecation. However, our results show that reactions to
API changes are not irrelevant.

4.3 Duration of Change Propagation

RQ3. How long does it take for systems to react and propagate API changes?

Results

A quick reaction to API changes is desirable for clients to benefit sooner from the
new API. Moreover, systems should apply at once to an API change and not over a
long period as they may be in an inconsistent state during that time. Next, we evaluate
the reaction and propagation time of the ecosystem.
Reaction time. We calculate the reaction time to an API change as the number of
days between its introduction date (i.e., the first time stamp it was detected in the
framework) and the first reaction in the ecosystem. As shown in Figure 10a, the mini-
mum is 0 days, the 1st quartile is 5 days, the median is 34 days, the 3rd quartile is 110
days. The 1st quartile at 5 days shows that some API changes see a reaction in few
days: this is possible if developers work both on frameworks and on client systems or
coordinate API evolution via mailing lists (Haenni et al., 2014).

In contrast, the median at about 34 days and the 3rd quartile at 110 days indicate
that some API changes take a long time to be applied. In fact, as Pharo is a dynam-
ically typed language, thus in addition to compile time, some API changes will only
appear for developers at runtime, which can explain the long reaction time frame.

In addition, we analyze the reaction time considering the two categories of API
changes, method suggestion and replacement, as shown in Figure 10b. For the API
changes about suggestion, the 1st quartile is 10 days, the median is 47 days, the
3rd quartile is 255 days, and the maximum is 351 days. In contrast, for the API



How do Developers React to API Evolution? a Large-Scale Empirical Study 17

0
2

0
0

4
0

0
6

0
0

8
0

0

(a) reacting time
n

u
m

b
e

r 
o

f 
d

a
y
s

method

suggestion

method

replacement

0
2

0
0

4
0

0
6

0
0

8
0

0

(b) reacting time

(method suggestion and replacement)

n
u

m
b

e
r 

o
f 

d
a

y
s

Fig. 10 Box plots for reaction time of (a) all API changes and (b) separated by method suggestion and
replacement, both in number of days.

changes about replacement, the 1st quartile is 1 days, the median is 20 days, the 3rd
quartile is 59 days, and the maximum is 110 days. Therefore, the reaction time for the
API changes due to method suggestions is longer than the ones about replacement,
implying that the former is harder to be detected by client developers. It is explained
by the fact that in the case of method suggestions, the old method is still valid, so
client developers are not forced to update their code. However, they would benefit if
these API changes are suggested to them beforehand. In practice, many developers
are simply not aware.

Propagation time. For a large system, apply a simple API change may not be trivial
due to their source code size. Thus, we computed the propagation time for the changes
on a per-system basis. We measured the interval between the first and the last reaction
to the change propagation per system.

We observed that 86% of the propagation occur in 0 days, indicating that the
majority of the systems fix an API change extremely quickly. It may occur with the
help of refactoring tools found in current IDEs. Figure 11a shows the distribution for
the other 14% of propagation: the 1st quartile is 12 days, the median is 71, the 3rd
quartile is 284, and the maximum is 662 (we filter outliers for legibility). The median
at 71 days shows that 50% of these systems take more than two months to apply
certain API changes; some systems may even take years.

In Figure 11b, we analyze the propagation time considering the two categories of
API changes. For the API changes about method suggestion, the 1st quartile is 7.5,
the median is 121, the 3rd quartile is 334.5, and the maximum is 662. For the API
changes about method replacement, the 1st quartile is 16, the median is 18, the 3rd
quartile is 201, and the maximum is 211. Again, similarly to the reaction time, the
adaptation time for the API changes about method suggestion is longer than the ones
about replacement. It suggests that the former takes more time to be adopted in the
same system by client developers.



18 André Hora et al.

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

(b) adaptation time
n
u
m

b
e
r 

o
f 
d
a
y
s

(a) propagation time

method

suggestion

method

replacement

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

(b) adaptation time

(method suggestion and replacement)

n
u
m

b
e
r 

o
f 
d
a
y
s

(b) propagation time

Fig. 11 Box plots for adaptation time of (a) all API changes and (b) separated by method suggestion and
replacement, both in number of days.

In summary, the results show that the reaction time of API changes is not quick.
Client developers, naturally, need some time to discover the new API change and ap-
ply them; this time is longer for API changes about method suggestion because Pharo
is a dynamically typed language. In contrast, the propagation time of API changes in
most of the systems occurs quickly. Still, some large systems may take a very long
time to apply changes.

Time-based results

The age of the API changes may also influence the adaptation time. We investigate
whether earlier API changes have a longer adaptation time, i.e., more systems notice
and react, making adaptation time longer.

Figure 12 shows the adaptation time (for the 14% of the adaptations that occur
in more than 0 days) separated in the groups earlier and later API changes. For the
earlier changes, the 1st quartile is 32, the median is 284, and the 3rd quartile is 454.
For the later changes, the 1st quartile is 5, the median is 18, and the 3rd quartile is
133. Comparing both earlier and later give a p-value < 0.01 and effect size = 0.39.
Thus, we confirm that earlier API changes have a longer adaptation time and that the
variable time also plays an important role in the adaptation of a system.

Comparison with API deprecation

The reaction time of the API changes considered in our study is longer when we
compare to the reaction time of API deprecation. In the API deprecation case, the 1st
quartile is 0 days, the median is 14 days, and the 3rd quartile is 90 days (compared
to 5, 34 and 110 days, respectively, in our API changes). If we only compare method
suggestion and deprecation reactions (47 days against 14, on the median), we see
that it takes more than 3 times longer to react to the former. Clearly, the reaction to
deprecated APIs is faster than in the case of API changes. In fact, it is facilitated by



How do Developers React to API Evolution? a Large-Scale Empirical Study 19

earlier changes later changes

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

adaptation time (time analysis)

n
u

m
b

e
r 

o
f 

d
a

y
s

propagation time (time analysis)

Fig. 12 Box plots for the adaptation time separated by earlier and later API changes.

warning messages produced by deprecated elements, which alert developers if they
update the new framework release.

4.4 Consistency of Change Propagation

RQ4. Do systems react to API changes uniformly?

Results

The API changes analyzed in the previous research questions described the main
way the analyzed frameworks evolved. However, some API changes may allow mul-
tiple replacements (Robbes et al., 2012). For example, Table 4 shows three examples
of API changes extracted from the analyzed frameworks and their reactions by the
ecosystem.

Table 4 Examples of API changes; the numbers show the confidence of the replacement in the ecosystem.

Old call (framework) New call
Framework Ecosystem

doSilently() suspendAllWhile() 80% suspendAllWhile()

Preferences.menuFont() StandardFonts.menuFont()
40% Fonts.menuFont()
40% ECPref.menuFont()

SecHashAlgorithm.new() SHA1.new()
63% HashFunction.new()
30% SHA1.new()

The first API change, doSilently() → suspendAllWhile(), is mostly followed by
the ecosystem, presenting a confidence of 80% (i.e., 80% of the commits that re-



20 André Hora et al.

moved the old call also added the new call). For the second API change, Prefer-
ences.standardMenuFont()→ StandardFonts.menuFont(), the ecosystem reacts with two
possible replacements, both with confidence of 40%. For the third API change, Sec-
HashAlgorithm.new() → SHA1.new(), the ecosystem also reacts with two possible re-
placements: a main one with confidence of 63% and an alternative one with 30%8.
In this replacement, the main one is not the same extracted from the analyzed frame-
work, i.e., it is HashFunction.new() instead of SHA1.new().

To better understand these changes, we analyze the consistency of the API changes
by verifying the reactions of the ecosystem.
Consistency of main and alternative replacements in the ecosystem: Figure 13a pres-
ents the confidence distribution of the main and alternative replacements in the ecosys-
tem. For the main replacement, the 1st quartile is 36%, the median is 60%, and the
3rd quartile is 100%. For the alternative replacement, the 1st quartile is 20%, the me-
dian is 25%, and the 3rd quartile is 31%. These results show that alternative replace-
ments are found in the ecosystem (such as the second and third examples in Table 4),
but with less confidence than the main ones. Thus, alternative replacements explain
a minority of the cases where affected systems do not react to the prescribed API
changes. In addition, we performed this analysis considering the two types of API
changes: method suggestion and replacement. For the main replacement, the median
is 42% for method suggestion against 91% for method replacement (for the alterna-
tive replacement: 22% against 30%). This result shows that API changes related to
method suggestion present less confidence than the ones related to method replace-
ment. In fact, with method suggestions, developers have more freedom to adopt other
solutions, decreasing the confidence of these changes.

main

replacement

alternative

replacement

0
2
0

4
0

6
0

8
0

1
0
0

(a) confidence of the API reactions

in the ecosystem

c
o
n
fi
d
e
n
c
e
 (

%
)

frameworks/libraries ecosystem

0
2
0

4
0

6
0

8
0

1
0
0

(b) confidence of the reacting API changes

c
o
n
fi
d
e
n
c
e
 (

%
)

Fig. 13 Box plots for the confidence of (a) the reaction in the ecosystem (main and alternative replace-
ments) and (b) the reacting API changes (frameworks/libraries and ecosystem).

8 Main and alternative replacements of API changes in the ecosystem are determined by verifying how
the ecosystem replaces the old calls. This is done by applying our approach described in Section 2 in the
ecosystem itself.



How do Developers React to API Evolution? a Large-Scale Empirical Study 21

Consistency of API changes in the frameworks and in the ecosystem: Figure 13b com-
pares the confidence distribution of the 62 reacting API changes both in the analyzed
frameworks (i.e., Pharo Core) and in the ecosystem. In the analyzed frameworks, the
minimum is 53%, the 1st quartile is 81%, the median is 95%, and the 3rd quartile
is 100% (recall that a minimum confidence of 50% was adopted to generate the API
changes). In the ecosystem, for the same API changes, the minimum is 2%, the 1st
quartile is 28%, the median is 60%, and the 3rd quartile is 100%.

There is a difference in the confidence: the API changes are more consistently fol-
lowed by the frameworks than by the ecosystem. It suggests that many replacements
are not resolved in a uniform manner in the ecosystem: client developers may adopt
other replacements (such as the second and third examples in Table 4); method calls
may be simply dropped, so they disappear without replacements; and developers may
replace the old call by local solutions. Thus, this result provides evidence that API
changes can be more confidently extracted from frameworks than from clients (i.e.,
the ecosystem).

Time-based results

The age of the API changes may also influence the consistency of reactions. We
investigate whether earlier API changes are more heterogeneous in their reactions
(more reactions, more opportunity to diverge). Figure 14 presents the distribution
shown in Figure 13b separated by earlier and later API changes.

In the frameworks (Figure 14a), the median is 95% for the earlier changes and
100% for the later changes. Comparing both earlier and later give a p-value > 0.05
and effect size = 0.06. Even though the difference between the median is small,
earlier API changes present overall less confidence, implying that their reactions are
slightly more heterogeneous than the later ones.

In the ecosystem (Figure 14b), the difference between earlier and later API changes
is clearer. In this case, for the earlier changes, the 1st quartile is 21%, the median is
35%, and the 3rd quartile is 60%. For the later changes, the 1st quartile is 61%,
the median is 85%, and the 3rd quartile is 100%. Comparing both earlier and later
give a p-value < 0.01 and effect size = 0.46. This observation confirms that, in the
ecosystem, earlier API changes are more heterogeneous in their reactions. We can
conclude that as old API changes produce more reactions over time (as shown in the
time-analysis of RQ3), such reactions are more likely to diverge.

Comparison with API deprecation

For the main replacement in the API deprecation study, the confidence of the 1st
quartile is 46%, the median is 60%, and the 3rd quartile is 80% (compared to 36%,
60%, and 100%, respectively, in our study). The distribution of the main replace-
ment is mostly equivalent in both cases. In fact, in the case of API deprecation, it is
common the adoption of alternative replacements and home-grown solutions due to
empty warning messages (Robbes et al., 2012).

Finally, we present the results of our last research question, which is also about the
consistency of change propagation.



22 André Hora et al.

earlier changes later changes

5
0

6
0

7
0

8
0

9
0

1
0

0

(a) confidence of the reacting API changes

(frameworks/libraries)
c
o

n
fi
d

e
n

c
e

 (
%

)

earlier changes later changes

0
2

0
4

0
6

0
8

0
1

0
0

(b) confidence of the reacting API changes

(ecosystem)

c
o

n
fi
d

e
n

c
e

 (
%

)

Fig. 14 Box plots for the confidence of earlier and later reacting API changes in the (a) frameworks and
(b) ecosystem.

RQ5. How followed are the API changes by the ecosystem?

Results

In the previous research questions, we have seen that the ecosystem may adapt with
other replacements instead the main one prescribed by the frameworks. Even if such
cases happen in practice, ideally, a single replacement should be provided and adopted
by clients. Next, we verify how followed are the API changes by the ecosystem, clas-
sifying them in three categories:

– Rarely followed: confidence is ≤ 10%.
– Somewhat followed: confidence is between 10% and 50%.
– Mostly followed: confidence is ≥ 50%.

Figure 15a shows the distribution of the classification for the 62 reacting API
changes. The minority of the API changes, 4 (6%) are rarely followed, 21 (34%)
are somewhat followed, and 37 (60%) are mostly followed; from such, 18 (29%) are
totally followed with a confidence of 100%. In addition, we performed this analy-
sis considering the two types of API changes (i.e.,, method suggestion and replace-
ment). For the mostly followed classification, we have 45% for method suggestion
against 76% for method replacement; for the somewhat followed classification, we
have 45% against 21%; and for the rarely followed classification, we have 9% against
3%. In fact, as expected, method replacement provides more followed classification
than method suggestion.

Figure 15b presents that only 13 (21%) API changes have multiple replacements
in the ecosystem. Thus, this explains roughly half of the cases where the API changes
are not consistently followed by the ecosystem (i.e., the rarely and somewhat cate-
gories). The other half of the cases where the API changes are not consistently fol-
lowed may happen due, for example, to the drop of method calls with no replacement
or the use of local solutions by the client developers.



How do Developers React to API Evolution? a Large-Scale Empirical Study 23

37

21

4

0 5 10 15 20 25 30 35 40

Mostly followed

Somewhat followed

Rarely followed

(a) How followed are the API changes?

49

13

0 10 20 30 40 50 60

Single replacement

Mul7ple replacement

(b) Do the ecosystem adopt mul7ple

replacements?

Fig. 15 (a) How client developers follow the API changes, and (b) number of single and multiple replace-
ments in the ecosystem.

Time-based results

We investigate whether earlier API changes are more or less followed. Figure 16a
shows that, for the earlier API changes, 4 (13%) are rarely followed, 16 (52%) are
somewhat followed, and 11 (35%) are mostly followed. In contrast, for the later API
changes, 0 are rarely followed, 5 (16%) are somewhat followed, and 26 (84%) are
mostly followed. Figure 16b shows that 11 (35%) earlier API changes and 2 (6%)
later API changes have multiple replacements.

In summary, earlier API changes are less followed than the later ones. Moreover,
as API changes become old, other replacements are adopted by the ecosystem than
the ones prescribed by the frameworks.

11

16

4

26

5

0

0 5 10 15 20 25 30

Mostly followed

Somewhat followed

Rarely followed

(a) How followed are the API changes?

(=me analysis)

earlier changes later changes

29

2

20

11

0 5 10 15 20 25 30 35

Single replacement

Mul5ple replacement

(b) Do the ecosystem adopt mul7ple

replacements? (7me analysis)

earlier changes later changes

Fig. 16 Time analysis for (a) how client developers follow the API changes, and (b) number of single and
multiple replacements in the ecosystem.

Comparison with API deprecation

Such observation was not performed by the API deprecation study.

5 Summary and Implications

In summary, our study shows that only 53% (62 out of 118) of the analyzed API
changes caused reaction in only 5% of the systems and affected 4.7% of the develop-
ers. Overall, the reaction time of API changes is not quick (median 34 days). Client
developers, naturally, need some time to discover and apply the new API; this time



24 André Hora et al.

is even longer in the case of method suggestion. In contrast, the propagation time to
API changes in most of the systems occurs quickly.

Moreover, a large amount of systems are potentially affected by the API changes:
61% of the systems and 55% of the developers. In fact, the number of affected sys-
tems are much higher than those that actually react to API changes. The majority
of the affected systems do not react neither in API changes nor in API deprecation.
As a result, the effort of porting to newer versions becomes more expensive due to
change accumulation. This could happen due to two reasons: either because they are
unaware or dormant systems or because developers follow a specific framework ver-
sion. A minority of this lack of reactions is explained by client developers reacting in
a way different of the one proposed by our API changes (i.e., they are not following
the main recommendation of the frameworks).

The answers to our research questions allow us to formulate the following impli-
cations of our study.
Deprecation mechanisms should be more adopted: Half of the API changes ana-
lyzed in this work (59 out of 118) are about method replacements. It means that such
API changes probably lack deprecation mechanisms. Ideally, they should have been
marked as deprecated by the framework developers. In fact, in large frameworks,
developers may not know whether their code is used by clients: this may cause a
growth (Robbes et al., 2012) or a lack in the use of deprecation (Wu et al., 2010; Dig
and Johnson, 2005). In our study, this lack of deprecation was mainly due to large
refactorings in the frameworks. For example, the framework for dealing with files
completely changed after Pharo 1.4. As a result, some APIs missed to be marked as
deprecated (e.g., in the Moose migration to Pharo 3.0, a developer noticed this issue
and commented9: “In FileSystem, ensureDirectory() was renamed to ensureCreateDi-
rectory() without a deprecation”, the framework developer then answered: “Fill up a
bug entry and we will add this deprecation. Good catch”). In fact, for such cases,
asking in StackOverflow10 or mailing lists11 is the current alternative for client de-
velopers, confirming they are popular tools developers use to satisfy their ecosystem-
related information needs (Haenni et al., 2014). Based on these results we conclude:
Many deprecation opportunities are missed by the developers (we found at least 59
instances in our study). Recommenders can be built to remind API developers about
these missed opportunities.

Client developers sometimes use internal parts of frameworks: Internal APIs are un-
stable and unsupported interfaces (Businge et al., 2013), so they should not be used
by clients. However, all the internal APIs (i.e., 10 cases) analyzed in this work are
used by clients. From such, 5 caused the clients to react as in the frameworks. Thus,
our results reinforce (at large-scale and ecosystem level) previous studies (Dagenais
and Robillard, 2008; Boulanger and Robillard, 2006; Businge et al., 2013; Hora et
al., 2016), showing that client systems use internal parts of frameworks to access

9 http://forum.world.st/moving-moose-to-pharo-3-0-td4718927.html
10 Coordination via Question and Answer sites: http://stackoverflow.com/questions/
15757529/porting-code-to-pharo-2-0

11 Coordination via mailing lists: http://goo.gl/50q2yZ, http://goo.gl/k9Fl0K, http:
//goo.gl/SkMORX



How do Developers React to API Evolution? a Large-Scale Empirical Study 25

functionalities not available in the public interfaces for a variety of reasons. Based on
these results we conclude the following:
Internal APIs are sometimes used by client developers in the ecosystem under anal-
ysis. Recommenders can be build to help API developers identify often used inter-
nal APIs; those are candidates to be public APIs to keep clients using stable and
supported interfaces.

Replacements are not resolved in a uniform manner: Many replacements are not re-
solved uniformly in the ecosystem. Clients may adopt other replacements in addition
to the prescribed ones; method calls may be simply dropped; and developers may
replace the old call by local solutions. In this context, some studies propose the ex-
traction of API changes from frameworks (e.g., Dagenais and Robillard (2008)) other
propose the extraction from clients (e.g., Schäfer et al. (2008)). Based on these results
we conclude the following:
There is no clear agreement on the best extraction source to detect API changes:
frameworks or client systems. This study shows evidences that frameworks are a
more reliable source.

6 Threats to Validity

Construct Validity: The construct validity is related to whether the measurement in
the study reflects real-world situations.

Software ecosystems present some instances of duplication (around 15% of the
code (Schwarz et al., 2012)), where packages are copied from a repository to another
(e.g., a developer keeping a copy of a specific framework version). It may overesti-
mate the number of systems affected to API changes.

Smalltalk (and Pharo) is a dynamically typed language, so the detection of API
change reaction may introduce noise as systems may use unrelated methods with
the same name. This means that an API change that uses a common method name
makes change propagation hard to be detected. This threat is alleviated by our manual
filtering of noisy API changes.

Another factor that alleviates this threat is our focus on specific evolution rules
(i.e., a specific replacement of one or more calls by one or more calls). For the first
three research questions, we include only commits that are removing an old API and
adding a new API to detect an API reaction. Requiring these two conditions to be
achieved, decreases—or in some cases eliminates—the possibility of noise. For the
fourth research question, we require the presence of the methods that contain a call
to the old API. In this case, the noise could have been an issue, however, this threat is
reduced because we discarded the API changes involved with common methods, i.e.,
the noisy ones.

We also identify two threats regarding the comparison with the API deprecation
study (Robbes et al., 2012). First, the time interval studied is not the same one: we
analyzed the ecosystem evolution in the period from 2008 to 2013 while the API
deprecation study analyzed from 2004 to 2011. Second, the way API changes are



26 André Hora et al.

selected is different: while we deprecation study simply collected the list of API
deprecation, we inferred the API changes from commits in source code repository;
these API changes were manually validated by the authors of the paper with the
support of documentation and code examples to eliminate incorrect and noisy ones.
For these reasons, we can not claim that this is an exact comparison. Parts of the
differences observed may be due to other factors.
Internal Validity: The internal validity is related to uncontrolled aspects that may
affect the experimental results.

Our tool to detect API changes has been (i) used by several members of our
laboratory to support their own research on frameworks evolution and (ii) divulged in
the Moose reengineering mailing list, so that developers of this community can use
it; thus, we believe that these tasks reduce the risks of this threat.

We also identify one threat regarding the time-based analysis. This analysis may
suffer from the threat that the propagation time has been computed by analyzing a
finite change history where new reactions in the systems could happen in the future.
External Validity: The external validity is related to the possibility to generalize our
results.

We performed the study on a single ecosystem. It needs to be replicated on other
ecosystems in other languages to characterize the phenomenon of change propagation
more broadly. In this context, recently, Wu et al. (2016) analyzed the impact of API
evolution in the Apache and Eclipse ecosystems.

Our results are limited to a single community in the context of open-source;
closed-source ecosystems, due to differences in the internal processes, may present
different characteristics. However, our study detected API change reactions in thou-
sands of client systems, which makes our results more robust.

The Pharo ecosystem is a Smalltalk ecosystem, a dynamically typed program-
ming language. Ecosystems in a statically typed programming language may present
differences. In particular, we expect static type checking to reduce the problem of
noisy API changes for such ecosystems.

As an alternative to our choice of ecosystem, we could have selected a develop-
ment community based on a more popular language such as Java or C++. However,
this would have presented several disadvantages. First, deciding which systems to
include or exclude would have been more challenging. Second, the potentially very
large size of the ecosystem could prove impractical. We consider the size of the Pharo
ecosystem as a “sweet spot”: with about 3,600 distinct client systems and more than
2,800 contributors, it is large enough to be relevant.

7 Related Work

7.1 Software Ecosystems Analysis

Software ecosystem is an overloaded term, which has several meanings. There are
two principal facets: the first one focuses on the business aspect (Messerschmitt and
Szyperski, 2005; Jansen et al., 2013), and the second on the artefact analysis aspect,
i.e., on the analysis of multiple, evolving software systems (Jergensen et al., 2011;



How do Developers React to API Evolution? a Large-Scale Empirical Study 27

Lungu, 2009; Robbes et al., 2012). In this work we use the latter one; we consider an
ecosystem to be “a collection of software projects which are developed and co-evolve
in the same environment” (Lungu, 2009). These software systems have common un-
derlying components, technology, and social norms (Jergensen et al., 2011).

Software ecosystems have been studied under a variety of aspects. Jergensen et
al. (2011) study the social aspect of ecosystems by focusing on how developers move
between projects in the software ecosystems. The studies of Lungu et al. (2010b)
and Bavota et al. (2013) aim to recover dependencies between the software projects of
an ecosystem to support impact analysis. Lungu et al. (2010a) focus on the software
ecosystems analysis through interactive visualization and exploration of the systems
and their dependencies. Gonzalez-Barahona et al. (2009) study the Debian Linux
distribution to measure its size, dependencies, and commonly used languages.

Mens et al. (2014) proposed the investigation of similarities between software
ecosystems and natural ecosystems found in ecology. In this context, they are study-
ing the GNOME and the CRAN ecosystems to better understand how software ecosys-
tems can benefit from biological ones. German et al. (2013) also analyze the evo-
lution of the CRAN ecosystem, investigating the growth of the ecosystem and the
differences between core and contributed packages.

In the context of API evolution and ecosystem impact analysis, McDonnell et
al. (2013) investigated API stability and adoption on a small-scale Android ecosys-
tem. In this study, API changes are derived from Android documentation. They found
that Android APIs are evolving fast while client adoption is not catching up with the
pace of API evolution. Our study does not rely on documentation but on source code
changes to generate the list of APIs to answer different questions. In fact, the amount
of changes in Android APIs usually triggers questions in StackOverflow, for exam-
ple, about API behavior or removal (Linares-Vásquez et al., 2014). In a large-scale
Android ecosystem analysis, Bavota et al. (2015) verified facts that could impact
application ratings. Specifically, the authors investigated whether application ratings
correlated with the fault- and change-proneness of their depending APIs; they show
that applications with high user ratings use APIs that are less fault- and change-prone.
Our study is complementary, presenting that API changes may also not propagate to
the ecosystem. Recently, Wu et al. (2016) analyzed both API changes and usages
in frameworks and client systems of Apache and Eclipse. While the authors focus
on API changes at class, interface, and method level (e.g., delete type, decrease ac-
cess, delete method parameter) our changes are in the context of evolution rules (e.g.,
method foo() must or should be replaced by bar()).

In a large-scale study, Robbes et al. (2012) investigate the impact of a specific
type of API evolution, API deprecation, in an ecosystem that includes more than
2,600 client systems; such ecosystem is the same that is used in our work. Our study
considers API changes that were not marked as deprecated. Thus, there is no overlap
between the changes investigated in our work and the ones investigated by that work.
In fact, these studies complement each other to better understand the phenomenon of
change propagation at the ecosystem level.



28 André Hora et al.

7.2 API Evolution Analysis

Many approaches have been developed to support API evolution and reduce the ef-
forts of client developers. Chow and Notkin (1996) present an approach where the
API developers annotate changed methods with replacement rules that will be used
to update client systems. Henkel and Diwan (2005) propose CatchUp!, a tool that
uses an IDE to capture and replay refactorings related to the API evolution. Hora et
al. (2014) and Hora and Valente (2015) present tools to keep track of API evolution
and popularity.

Kim et al. (2007) automatically infer rules from structural changes. The rules are
computed from changes at or above the level of method signatures, i.e., the body of
the method is not analyzed. Kim and Notkin (2009) propose LSDiff, to support com-
puting differences between two system versions. In such study, the authors take into
account the body of the method to infer rules, improving their previous work (Kim et
al., 2007) where only method signatures were analyzed. Each version is represented
with predicates that capture structural differences. Based on the predicates, the tool
infers systematic structural differences. Nguyen et al. (2010) propose LibSync that
uses graph-based techniques to help developers migrate from one framework version
to another. In this process, the tool takes as input the client system, a set of sys-
tems already migrated to the new framework as well as the old and new version of
the framework in focus. Using the learned adaptation patterns, the tool recommends
locations and update operations for adapting due to API evolution.

Dig and Johnson (2005) help developers to better understand the requirements
for migration tools. They found that 80% of the changes that break client systems are
refactorings. Cossette and Walker (2012) found that, in some cases, API evolution is
hard to handle and needs the assistance of an expert.

Some studies address the problem of discovering the mapping of APIs between
different platforms that separately evolved. For example, Zhong et al. (2010) target
the mapping between Java and C# APIs while Gokhale et al. (2013) present the map-
ping between JavaME and Android APIs.

8 Conclusion

This paper presented an empirical study about the impact of API evolution, in the
specific case of methods unrelated to API deprecation. The study was performed in
the context of a large-scale software ecosystem, Pharo, with around 3,600 distinct
systems. We analyzed 118 API changes extracted from frameworks and we found
that 53% impacted other systems. We reiterate the most interesting conclusions from
our results:

– API changes ca affect the whole ecosystem in terms of client systems, methods,
and developers. Client developers need some time to discover and apply the new
API, and the majority of the systems do not react at all. Such analysis can be
influenced by the age of the API change.

– Replacements can not be resolved in a uniform manner in the ecosystem. Thus,
API changes can be more confidently extracted from frameworks than from clients.



How do Developers React to API Evolution? a Large-Scale Empirical Study 29

– API changes and deprecation can present different characteristics, for example,
API change reaction is slower and smaller.

As future work, we plan to extend this research to analyze ecosystems based on
statically typed languages. Therefore, the results presented in our study will enable us
to compare reactions of statically and dynamically typed ecosystems to better char-
acterize the phenomenon of change propagation.

Acknowledgment

This research was supported by CNPq, FAPEMIG, Fundect-MS (007/2015), and
ANR (ANR-2010-BLAN- 0219-01).

References

Bavota G, Canfora G, Penta MD, Oliveto R, Panichella S (2013) The evolution of
project inter-dependencies in a software ecosystem: the case of Apache. In: Inter-
national Conference on Software Maintenance

Bavota G, Linares-Vasquez M, Bernal-Cardenas CE, Di Penta M, Oliveto R, Poshy-
vanyk D (2015) The impact of api change-and fault-proneness on the user ratings
of android apps. IEEE Transactions on Software Engineering 41(4)

Boulanger J, Robillard M (2006) Managing concern interfaces. In: International Con-
ference on Software Maintenance

Brito G, Hora A, Valente MT, Robbes R (2016) Do developers deprecate APIs with
replacement messages? a large-scale analysis on Java systems. In: International
Conference on Software Analysis, Evolution and Reengineering

Businge J, Serebrenik A, van den Brand MG (2013) Eclipse API usage: the good and
the bad. Software Quality Journal

Chow K, Notkin D (1996) Semi-automatic update of applications in response to li-
brary changes. In: International Conference on Software Maintenance

Cossette BE, Walker RJ (2012) Seeking the ground truth: a retroactive study on the
evolution and migration of software libraries. In: International Symposium on the
Foundations of Software Engineering

Dagenais B, Robillard MP (2008) Recommending adaptive changes for framework
evolution. In: International Conference on Software engineering

Dig D, Johnson R (2005) The role of refactorings in API evolution. In: International
Conference on Software Maintenance

German DM, Adams B, Hassan AE (2013) The evolution of the R software ecosys-
tem. In: European Conference on Software Maintenance and Reengineering

Gokhale A, Ganapathy V, Padmanaban Y (2013) Inferring likely mappings between
APIs. In: International Conference on Software Engineering

Gonzalez-Barahona JM, Robles G, Michlmayr M, Amor JJ, German DM (2009)
Macro-level software evolution: a case study of a large software compilation. Em-
pirical Software Engineering 14(3)



30 André Hora et al.

Haenni N, Lungu M, Schwarz N, Nierstrasz O (2014) A Quantitative Analysis of
Developer Information Needs in Software Ecosystems. In: European Conference
on Software Architecture Workshops

Henkel J, Diwan A (2005) Catchup!: Capturing and replaying refactorings to support
API evolution. In: International Conference on Software Engineering

Hora A, Valente MT (2015) apiwave: Keeping track of API popularity and migration.
In: International Conference on Software Maintenance and Evolution, http://
apiwave.com

Hora A, Anquetil N, Ducasse S, Allier S (2012) Domain Specific Warnings: Are They
Any Better? In: International Conference on Software Maintenance

Hora A, Etien A, Anquetil N, Ducasse S, Valente MT (2014) APIEvolutionMiner:
Keeping API Evolution under Control. In: Software Evolution Week (European
Conference on Software Maintenance and Working Conference on Reverse Engi-
neering)

Hora A, Anquetil N, Etien A, Ducasse S, Valente MT (2015a) Automatic detection
of system-specific conventions unknown to developers. Journal of Systems and
Software 109

Hora A, Robbes R, Anquetil N, Etien A, Ducasse S, , Valente MT (2015b) How
do developers react to API evolution? the Pharo ecosystem case. In: International
Conference on Software Maintenance and Evolution

Hora A, Valente MT, Robbes R, Anquetil N (2016) When should internal interfaces
be promoted to public? In: International Symposium on the Foundations of Soft-
ware Engineering

Jansen S, Brinkkemper S, Cusumano M (2013) Software Ecosystems: Analyzing and
Managing Business Networks in the Software Industry. Edward Elgar Pub

Jergensen C, Sarma A, Wagstrom P (2011) The onion patch: migration in open source
ecosystems. In: European Conference on Foundations of Software Engineering

Kim M, Notkin D (2009) Discovering and Representing Systematic Code Changes.
In: International Conference on Software Engineering

Kim M, Notkin D, Grossman D (2007) Automatic inference of structural changes
for matching across program versions. In: International Conference on Software
Engineering

Linares-Vásquez M, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D (2014) How
do API changes trigger stack overflow discussions? a study on the android SDK.
In: International Conference on Program Comprehension

Lungu M (2009) Reverse Engineering Software Ecosystems. PhD thesis, University
of Lugano, Switzerland (October 2009)

Lungu M, Lanza M, Gîrba T, Robbes R (2010a) The small project observatory: Vi-
sualizing software ecosystems. Science of Computer Programming 75(4)

Lungu M, Robbes R, Lanza M (2010b) Recovering inter-project dependencies in
software ecosystems. In: International Conference on Automated Software Engi-
neering

McDonnell T, Ray B, Kim M (2013) An empirical study of API stability and adoption
in the android ecosystem. In: International Conference on Software Maintenance

Meng S, Wang X, Zhang L, Mei H (2012) A history-based matching approach to
identification of framework evolution. In: International Conference on Software



How do Developers React to API Evolution? a Large-Scale Empirical Study 31

Engineering
Mens T, Claes M, Grosjean P, Serebrenik A (2014) Studying evolving software

ecosystems based on ecological models. In: Mens T, Serebrenik A, Cleve A (eds)
Evolving Software Systems, Springer Berlin Heidelberg

Messerschmitt DG, Szyperski C (2005) Software ecosystem: understanding an indis-
pensable technology and industry. MIT Press Books 1

Nguyen HA, Nguyen TT, Wilson G Jr, Nguyen AT, Kim M, Nguyen TN (2010) A
graph-based approach to API usage adaptation. In: International Conference on
Object Oriented Programming Systems Languages and Applications

Robbes R, Lungu M, Röthlisberger D (2012) How do developers react to API dep-
recation? The case of a smalltalk ecosystem. In: International Symposium on the
Foundations of Software Engineering

Schäfer T, Jonas J, Mezini M (2008) Mining framework usage changes from instan-
tiation code. In: International Conference on Software engineering

Schwarz N, Lungu M, Robbes R (2012) On how often code is cloned across reposi-
tories. In: International Conference on Software Engineering

Wu W, Gueheneuc YG, Antoniol G, Kim M (2010) Aura: a hybrid approach to iden-
tify framework evolution. In: International Conference on Software Engineering

Wu W, Khomh F, Adams B, Guéhéneuc YG, Antoniol G (2016) An exploratory study
of API changes and usages based on apache and eclipse ecosystems. Empirical
Software Engineering

Zaki M, Meira Jr W (2012) Fundamentals of data mining algorithms
Zhong H, Thummalapenta S, Xie T, Zhang L, Wang Q (2010) Mining API mapping

for language migration. In: International Conference on Software Engineering


