S. Särkkä, Recursive Bayesian Inference on Stochastic Differential Equations, Doctoral dissertation, 2006.

S. Särkkä, On Sequential Monte Carlo Sampling of Discretely Observed Stochastic Differential Equations, 2006 IEEE Nonlinear Statistical Signal Processing Workshop, 2006.
DOI : 10.1109/NSSPW.2006.4378811

S. Särkkä and T. Sottinen, Application of Girsanov theorem to particle filtering of discretely observed continuous-time non-linear systems, Bayesian Analysis, vol.3, issue.3, pp.555-584, 2008.
DOI : 10.1214/08-BA322

A. H. Jazwinski, Stochastic Processes and Filtering Theory, 1970.

P. and D. Moral, Non-linear filtering: interacting particle resolution, Markov processes and related fields, pp.555-581, 1996.

P. , D. Moral, and L. Miclo, Branching and interacting particle systems approximations of Feynman- Kac formulae with applications to non-linear filtering, 2000.

D. Crisan and A. Doucet, A survey of convergence results on particle filtering methods for practitioners, IEEE Transactions on Signal Processing, vol.50, issue.3, pp.736-746, 2002.
DOI : 10.1109/78.984773

X. Hu, T. B. Schön, and L. Ljung, A General Convergence Result for Particle Filtering, IEEE Transactions on Signal Processing, vol.59, issue.7, 2011.
DOI : 10.1109/TSP.2011.2135349

P. and D. Moral, Mean field simulation for Monte Carlo integration, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00932211

R. Douc, E. Moulines, and D. Stoffer, Nonlinear time series: Theory, Methods and Applications with R Examples, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01263245

I. S. Mbalawata, Adaptive Markov Chain Monte Carlo and Bayesian Filtering for State Space Models, Doctoral dissertation, 2014.

I. S. Mbalawata and S. Särkkä, Moment conditions for convergence of particle filters with unbounded importance weights, Signal Processing, vol.118, pp.133-138, 2016.
DOI : 10.1016/j.sigpro.2015.06.018

I. V. Girsanov, On Transforming a Certain Class of Stochastic Processes by Absolutely Continuous Substitution of Measures, Theory of Probability and its Applications, pp.285-301, 1960.
DOI : 10.1137/1105027

P. Hall and C. C. Heyde, Martingale limit theory and its application, Academic press, 1980.

B. Grigelionis and V. Mackevi?ius, The finiteness of moments of a stochastic exponential, Statistics & Probability Letters, vol.64, issue.3, pp.243-248, 2003.
DOI : 10.1016/S0167-7152(03)00155-X

F. E. Daum, Exact finite dimensional nonlinear filters for continuous time processes with discrete time measurements, The 23rd IEEE Conference on Decision and Control, pp.16-22, 1984.
DOI : 10.1109/CDC.1984.272243