C. Crépeau, L. Salvail, J. Simard, and A. Tapp, Two Provers in Isolation, Advances in Cryptology?ASIACRYPT 2011, pp.407-430, 2011.
DOI : 10.1007/978-3-642-25385-0_22

S. Fehr and M. Fillinger, On the Composition of Two-Prover Commitments, and Applications to Multi-round Relativistic Commitments, Advances in Cryptology - EUROCRYPT 2016 -35th Annual International Conference on the Theory and Applications of Cryptographic Techniques Proceedings, Part II, pp.477-496, 2005.
DOI : 10.1007/978-3-662-49896-5_17

. Lkb-+-15-]-t, J. Lunghi, F. Kaniewski, R. Bussières, M. Houlmann et al., Practical relativistic bit commitment, Phys. Rev. Lett, vol.115, pp.30502-30520, 2015.

M. Pivoluska and M. Plesch, An explicit classical strategy for winning a ${\mathrm{CHSH}}_{q}$ game, New Journal of Physics, vol.18, issue.2, pp.25013-25027, 2016.
DOI : 10.1088/1367-2630/18/2/025013

M. Pivoluska, M. Pawlowski, and M. Plesch, Experimentally secure relativistic bit commitment. arXiv preprint quant-ph :1601.08095, 2016.

M. Pawlowski and A. Winter, ???Hyperbits???: The information quasiparticles, Physical Review A, vol.85, issue.2, p.2012
DOI : 10.1103/PhysRevA.85.022331

. Vmh-+-16-]-e, A. Verbanis, R. Martin, G. Houlmann, F. Boso et al., 24-hour relativistic bit commitment. arXiv preprint, p.15, 2016.

. En, observation perturbe le système, et c'est le cas ici. Mesurer un q-bit détruit la superposition, et fixe le q-bit dans l'état mesuré, En particulier, si on mesurait à nouveau le même q-bit, on obtiendrait le même résultat