T. J. Barth-]-t and . Barth, A 3-D upwind Euler solver for unstructured meshes AIAA paper 91-1548CP Aspects of unstructured grids and finite volume solvers for the Euler and Navier- Stokes equations, Special Course on Unstructured Grid Methods for advection Dominated Flows, AGARD report 787, 1991.

T. J. Barth, Numerical Methods and Error Estimation for Conservation laws on Structured and Unstructured Meshes. VKI Computational Fluid Dynamics Lecture Series, 2003.

T. J. Barth and M. Ohlberger, Finite Volume Methods: Foundation and Analysis, Encyclopedia of Computational Mechanics, 2004.
DOI : 10.1002/0470091355.ecm010

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. A. Battjes, Surf Similarity, Coastal Engineering 1974, pp.446-480, 1974.
DOI : 10.1061/9780872621138.029

S. Beji and J. A. Battjes, Experimental investigation of wave propagation over a bar, Coastal Engineering, vol.19, issue.1-2, p.151, 1993.
DOI : 10.1016/0378-3839(93)90022-Z

A. Bermudez, A. Dervieux, J. A. Desideri, and M. E. Vázquez, Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes, Computer Methods in Applied Mechanics and Engineering, vol.155, issue.1-2, p.49, 1998.
DOI : 10.1016/S0045-7825(97)85625-3

URL : https://hal.archives-ouvertes.fr/inria-00073955

M. Brocchini, A reasoned overview on Boussinesq-type models: the interplay between physics, mathematics and numerics, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.13, issue.2160, 2013.
DOI : 10.1098/rspa.2013.0496

P. Brufau, P. García-navarro, and M. E. Vázquez-cendón, Zero mass error using unsteady wetting???drying conditions in shallow flows over dry irregular topography, International Journal for Numerical Methods in Fluids, vol.45, issue.10, pp.1047-1082, 2004.
DOI : 10.1002/fld.729

P. Brufau, M. E. Vázquez-cendón, P. Gracía-navarro, ]. M. Castro, A. M. Ferreiro et al., A numerical model for the flooding and drying of irregular domain The numerical treatment of wet/dry fronts in shallow flows: Application to one-layer and two-layer systems, Int. J. Numer. Meth. Fluids Mathematical and Computer Modelling, vol.39, issue.42, pp.247419-439, 2002.

A. I. Delis, M. Kazolea, and N. A. Kampanis, A robust high-resolution finite volume scheme for the simulation of long waves over complex domains, International Journal for Numerical Methods in Fluids, vol.29, issue.4, pp.419-452, 2008.
DOI : 10.1002/fld.1537

A. I. Delis, I. K. Nikolos, and M. Kazolea, Performance and Comparison of Cell-Centered and??Node-Centered Unstructured Finite Volume Discretizations for??Shallow Water Free Surface Flows, Archives of Computational Methods in Engineering, vol.38, issue.7, pp.57-118, 2011.
DOI : 10.1007/s11831-011-9057-6

F. Gallerano, G. Cannata, and M. Villani, An integral contravariant formulation of the fully non-linear Boussinesq equations, Coastal Engineering, vol.83, pp.119-136, 2014.
DOI : 10.1016/j.coastaleng.2013.09.006

A. G. Filippini, M. Kazolea, and M. Ricchiuto, A flexible genuinely nonlinear approach for nonlinear wave propagation, breaking and run-up, Journal of Computational Physics, vol.310, pp.381-417, 2016.
DOI : 10.1016/j.jcp.2016.01.027

A. George and J. W. Liu, Computer solution of Large Sparce Positive Definite Systems, N.J, 1981.

E. Godlewski and P. A. Raviart, Hyperbolic systems of conservation laws, Applied Mathematical Sciences, vol.118, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00113734

L. Hamm, Directional Nearshore Wave Propagation Over a Rip Channel: An Experiment, Coastal Engineering 1992, 1992.
DOI : 10.1061/9780872629332.017

G. Hanbin, L. Yanbao, L. Shaowu, and Q. Luwen, Applications of a boussinesq wave model, International Conference on Estuariew and Coasts, 2003.

M. E. Hubbard and P. García-navarro, Flux Difference Splitting and the Balancing of Source Terms and Flux Gradients, Journal of Computational Physics, vol.165, issue.1, pp.89-125, 2000.
DOI : 10.1006/jcph.2000.6603

M. Kazolea, A. I. Delis, I. Nikolos, and C. E. Synolakis, An unstructured finite volume numerical scheme for extended 2D Boussinesq-type equations, Coastal Engineering, vol.69, pp.42-66, 2012.
DOI : 10.1016/j.coastaleng.2012.05.008

M. Kazolea, A. I. Delis, and C. E. Synolakis, Numerical treatment of wave breaking on unstructured finite volume approximations for extended Boussinesq-type equations, Journal of Computational Physics, vol.271, pp.281-305, 2014.
DOI : 10.1016/j.jcp.2014.01.030

A. B. Kennedy, J. T. Chen, Q. Kirby, and R. A. Dalrymple, Boussinesq Modeling of Wave Transformation, Breaking, and Runup.???I: 1D, Journal of Waterway, Port, Coastal, and Ocean Engineering, vol.126, issue.1, pp.39-47, 2000.
DOI : 10.1061/(ASCE)0733-950X(2000)126:1(39)

J. T. Kirby, Boussinesq Models and Their Application to Coastal Processes across a Wide Range of Scales, Journal of Waterway, Port, Coastal, and Ocean Engineering, vol.142, issue.6, p.2016
DOI : 10.1061/(ASCE)WW.1943-5460.0000350

G. T. Klonaris, C. D. Memos, and N. K. Drã¸nen, High-Order Boussinesq-Type Model for Integrated Nearshore Dynamics, Journal of Waterway, Port, Coastal, and Ocean Engineering, vol.142, issue.6, pp.142-2016
DOI : 10.1061/(ASCE)WW.1943-5460.0000349

Q. Liang and A. G. Borthwick, Adaptive quadtree simulation of shallow flows with wet???dry fronts over complex topography, Computers & Fluids, vol.38, issue.2, pp.221-234, 2009.
DOI : 10.1016/j.compfluid.2008.02.008

M. S. Longet-higgins, D. E. Cartwright, and N. Smith, Observation of the directional spectrum of sea waves using the motions of a floating buoy, Proc. Conf. of Ocean Wave Spectra, 1961.

P. J. Lynett, Nearshore Wave Modeling with High-Order Boussinesq-Type Equations, Journal of Waterway, Port, Coastal, and Ocean Engineering, vol.132, issue.5, pp.348-357, 2006.
DOI : 10.1061/(ASCE)0733-950X(2006)132:5(348)

P. A. Madsen and O. R. Sørensen, A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry, Coastal Engineering, vol.18, issue.3-4, pp.183-204, 1992.
DOI : 10.1016/0378-3839(92)90019-Q

P. A. Madsen, O. R. Sørensen, and H. A. Schäffer, Surf zone dynamics simulated by a Boussinesq type model. Part II: surf beat and swash oscillations for wave groups and irregular waves, Coastal Engineering, vol.32, issue.4, pp.289-319, 1997.
DOI : 10.1016/S0378-3839(97)00029-X

H. Mase, Frequency down-shift of swash oscillations compared to incident waves, Journal of Hydraulic Research, vol.33, issue.3, pp.397-411, 1995.
DOI : 10.1017/S0022112063000628

I. K. Nikolos and A. I. Delis, An unstructured node-centered finite volume scheme for shallow water flows with wet/dry fronts over complex topography, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.47-48, pp.3723-3750, 2009.
DOI : 10.1016/j.cma.2009.08.006

O. Nwogu, Alternative Form of Boussinesq Equations for Nearshore Wave Propagation, Journal of Waterway, Port, Coastal, and Ocean Engineering, vol.119, issue.6, pp.618-638, 1994.
DOI : 10.1061/(ASCE)0733-950X(1993)119:6(618)

D. H. Peregrine, Long waves on a beach, Journal of Fluid Mechanics, vol.13, issue.04, pp.815-882, 1967.
DOI : 10.1017/S0022112067002605

M. Ricchiuto and A. Bollermann, Stabilized residual distribution for shallow water simulations, Journal of Computational Physics, vol.228, issue.4, pp.1071-1115, 2009.
DOI : 10.1016/j.jcp.2008.10.020

URL : https://hal.archives-ouvertes.fr/inria-00538892

P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, vol.43, issue.2, pp.357-372, 1981.
DOI : 10.1016/0021-9991(81)90128-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

V. Roeber, K. F. Cheung, and M. H. Kobayashi, Shock-capturing Boussinesq-type model for nearshore wave processes, Coastal Engineering, vol.57, issue.4, pp.407-423, 2010.
DOI : 10.1016/j.coastaleng.2009.11.007

Y. Saad, Iterative Methods for Sparse Linear Systems, 1996.
DOI : 10.1137/1.9780898718003

H. A. Schäffer, P. A. Madsen, and R. Deigaard, A Boussinesq model for waves breaking in shallow water, Coastal Engineering, vol.20, issue.3-4, pp.185-202, 1993.
DOI : 10.1016/0378-3839(93)90001-O

T. M. Smith, M. F. Barone, and R. B. Bond, Comparison of Reconstruction Techniques for Unstructured Mesh Vertex Centered Finite Volume Schemes, 18th AIAA Computational Fluid Dynamics Conference, pp.1-22, 2007.
DOI : 10.2514/6.2007-3958

O. R. Sørensen, H. A. Schäffer, and P. A. Madsen, Surf zone dynamics simulated by a Boussinesq type model. III. Wave-induced horizontal nearshore circulations, Coastal Engineering, vol.33, issue.2-3, pp.155-176, 1998.
DOI : 10.1016/S0378-3839(98)00007-6

O. R. Sørensen, H. A. Shäffer, and L. S. Sørensen, Boussinesq-type modelling using an unstructured finite element technique, Coastal Engineering, vol.50, issue.4, p.182, 2004.
DOI : 10.1016/j.coastaleng.2003.10.005

R. J. Spiteri and S. J. Ruuth, A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods, SIAM Journal on Numerical Analysis, vol.40, issue.2, p.469, 2002.
DOI : 10.1137/S0036142901389025

M. Tissier, P. Bonneton, F. Marche, F. Chazel, and D. Lannes, A new approach to handle wave breaking in fully non-linear Boussinesq models, Coastal Engineering, vol.67, pp.54-66, 2012.
DOI : 10.1016/j.coastaleng.2012.04.004

URL : https://hal.archives-ouvertes.fr/hal-00798996

M. Tonelli and M. Petti, Hybrid finite volume ??? finite difference scheme for 2DH improved Boussinesq equations, Coastal Engineering, vol.56, issue.5-6, pp.609-620, 2009.
DOI : 10.1016/j.coastaleng.2009.01.001

M. Tonelli and M. Petti, Finite volume scheme for the solution of 2D extended Boussinesq equations in the surf zone, Ocean Engineering, vol.37, issue.7, pp.567-582, 2010.
DOI : 10.1016/j.oceaneng.2010.02.004

M. Tonelli and M. Petti, Shock-capturing Boussinesq model for irregular wave propagation, Coastal Engineering, vol.61, pp.8-19, 2012.
DOI : 10.1016/j.coastaleng.2011.11.006

G. D. Van-albada, B. Van-leer, and W. W. Roberts, A Comparative Study of Computational Methods in Cosmic Gas Dynamics, Astron. Astrophysics, vol.108, pp.46-84, 1982.
DOI : 10.1007/978-3-642-60543-7_6

B. Van-leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, Journal of Computational Physics, vol.32, issue.1, p.101, 1979.
DOI : 10.1016/0021-9991(79)90145-1

. Wafo-group, WAFO -A Matlab Toolbox for Analysis of Random Waves and Loads -A Tutorial, Math. Stat., Center for Math. Sci, 2000.

G. Wei, J. T. Kirby, and A. Sinha, Generation of waves in Boussinesq models using a source function method, Coastal Engineering, vol.36, issue.4, p.271, 1999.
DOI : 10.1016/S0378-3839(99)00009-5

T. Wu, A numerical study of three dimensional breaking waves and turbulence effects, 2004.

Y. Yamazaki, Z. Kowalik, and K. F. Cheung, Depth-integrated, non-hydrostatic model for wave breaking and run-up, Inria RESEARCH CENTRE BORDEAUX ? SUD-OUEST 200 avenue de la Vieille Tour 33405 Talence Cedex Publisher Inria Domaine de Voluceau -Rocquencourt BP 105 -78153 Le Chesnay Cedex inria.fr ISSN, pp.473-0249, 2009.
DOI : 10.1029/2007GL030158