
HAL Id: hal-01419968
https://inria.hal.science/hal-01419968

Submitted on 20 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal semantics of behavior specifications in the
architecture analysis and design language standard

Loïc Besnard, Thierry Gautier, Clément Guy, Paul Le Guernic, Jean-Pierre
Talpin, Brian R Larson, Etienne Borde

To cite this version:
Loïc Besnard, Thierry Gautier, Clément Guy, Paul Le Guernic, Jean-Pierre Talpin, et al.. Formal
semantics of behavior specifications in the architecture analysis and design language standard. HLDVT
2016 - 18th IEEE International High-Level Design Validation and Test Workshop, Oct 2016, Santa
Cruz, United States. pp.30-39, �10.1109/HLDVT.2016.7748252�. �hal-01419968�

https://inria.hal.science/hal-01419968
https://hal.archives-ouvertes.fr

Formal Semantics of Behavior Specifications
in the Architecture Analysis and Design

Language Standard

Loı̈c Besnard, Thierry Gautier, Clément Guy, Paul Le Guernic, Jean-Pierre Talpin, INRIA & IRISA
Brian R. Larson, FDA Scholar at KSU and Étienne Borde, Telecom ParisTech

Abstract—In system design, an architecture specifi-
cation or model serves, among other purposes, as a
repository to share knowledge about the system being
designed. Such a repository enables automatic generation
of analytical models for different aspects relevant to
system design (timing, reliability, security, etc.). The
Architecture Analysis and Design Language (AADL) is
a standard proposed by SAE to express architecture
specifications and share knowledge between the different
stakeholders about the system being designed. To support
unambiguous reasoning, formal verification, high-fidelity
simulation of architecture specifications in a model-
based AADL design workflow, we have defined a formal
semantics for the behavior specification of the AADL, the
presentation of this semantics is the aim of this paper.

I. INTRODUCTION

In system design, an architecture specification
serves several important purposes. First, it breaks
down a system model into manageable components to
establish clear interfaces between them. In this way,
complexity becomes manageable by hiding details
that are not relevant at a given level of abstraction.
Clear, formally defined, component interfaces allow
us to avoid integration problems at the implementation
phase. Connections between components, which spec-
ify how components affect each other, help propagate
the effects of a change in one component to the linked
components.

Second and most importantly, an architecture model
is a repository to share knowledge about the system
being designed. This knowledge can be represented as
requirements, design artifacts, component implemen-
tations, held together by a structural backbone. Such a
repository enables automatic generation of analytical
models for different aspects relevant to system design,
such as timing, reliability, security, performance, en-
ergy, etc. Since all the analyses are generated from
the same source, the consistency of assumptions w.r.t.
guarantees, of abstractions w.r.t. refinements, used for
different analyses, becomes easier, and can be properly
ensured in a design methodology based on formal
verification and synthesis methods.

Several standards for modeling embedded architec-
tures have emerged in recent years: the SAE Archi-
tecture Analysis and Design Language (AADL)1 [1],
SysML2, and UML MARTE [18]. Each of them
represents different design approaches, materialises
different concepts, serves different purposes. We focus
on the AADL, and the scope and precision of concepts
defined by this standard, to define a formal semantics
for a significant subset of its behavioral specification
annex language. Just as non-functional properties (tim-
ing, performance, energy, security properties), such
descriptions can be attached to threads, processes, or
any object of the standard (bus, sensor, actuator, port)
to formally specify its behavior, as specified in the
standard (e.g. a bus), or refine it (e.g. as an AFDX
bus).

Since it began being discussed in the AADL com-
mittee, the formal semantics defined in this article
evolved from a synchronous model of computation
and communication [4] to a semantic framework for
time and concurrency in the standard: asynchronous,
synchronous or timed, to serve as a reference for model
checking, code generation or simulation tools uses
with the standard. This semantics is simple, relying
on the structure of automata present in the standard al-
ready, yet provides tagged, trace semantics framework
to establish formal relations between (synchronous,
asynchronous, timed) usages or interpretations of be-
havior.

The remainder of this paper is organized as fol-
lows. Section II gives an overview of the Architecture
Analysis and Design Language (AADL). Section III
presents the constrained automata, that we use to
specify the model of computation and communication
of an AADL behavior specification. Section IV details
the AADL behavior annex and its formalization us-
ing constrained automata. Section V discusses related
work about formal specification of AADL models and
finally Section VI concludes.

The extended version of this paper, [6], details

1http://www.aadl.info/
2http://www.omg.org/spec/SysML/1.4/978-1-5090-4270-8/16/$31.00 c©2016 IEEE

the implementation of the present model using the
synchronous modeling environment Polychony on Po-
larsys3 and applies it to the high-fidelity functional and
real-time model of an adaptative cruise control system,
Fig. 1.

Figure 1. Overview of the Adaptive Cruise Control system modeled
with AADL [6]. Double-lined rectangles represent devices, double-
arrows buses and rectangles with rounded corners systems and
subsystems.

II. THE ARCHITECTURE ANALYSIS AND DESIGN
LANGUAGE

AADL [1] is a SAE International standard, ded-
icated to modeling embedded real-time system ar-
chitectures. As an architecture description language,
based on a component modeling approach, AADL
describes the structure of systems as an assembly of
software components allocated on execution platform
components together with constraints and properties,
including timing.

Architecture

In AADL, three distinct families of components are
provided:
• software application components which include

process, thread, thread group, subprogram, and
data components,

• execution platform components that model the
hardware part of a system including (possibly
virtual) processor, memory, device, and (possibly
virtual) bus components,

• composite components (systems).
The AADL components communicate via data,

event, and event-data ports. Each component has a
type, which represents the functional interface of the
component and externally observable attributes. Each
type may be associated with zero, one or more imple-
mentation(s) that describe the contents of the compo-
nent, as well as the connections between components.

Properties

AADL properties provide various information about
model elements of an AADL specification. For exam-
ple, a property Dispatch Protocol is used to provide
the dispatch type of a thread. Property associations

3http://www.polarsys.org/projects/polarsys.pop

Figure 2. Control subsystem of the ACC system modeled with
AADL specifying the main computational process and its associated
ECU, bus and memory properties [6].

in component declarations assign a particular property
value, e.g., Periodic, to a particular property, e.g.,
Dispatch Protocol, for a particular component.

Timing execution model

Threads are dispatched depending on the thread
type: periodically; by the arrival of data or events on
ports; or from the arrival of a subprogram call (from
another thread). Three event ports are predeclared:
dispatch, complete and error.

A thread is activated to perform a computation at
start time, and has to be finished before the dead-
line. The thread send a complete event at the end
of its execution. The received inputs are frozen at a
specified time (Input Time), by default the dispatch
time. This implies that the content of a dispatched port
does not change between two consecutive Input Times,
even though the sender may send new values in its
input FIFO. Such new values arriving after a given
Input Time will not be available through the port and
thus will not be processed until the next Input Time.
As a result, the performed computation is not affected
by a new input arrival until an explicit request for
input (another Input Time, such as the next dispatch
time). Similarly, the output is made available to other
components at a specified point of Output Time, by
default at complete (resp., deadline) time if the asso-
ciated port connection is immediate (resp., delayed)
communication.

III. CONSTRAINED AUTOMATA

We define the model of computation and com-
munication of a behavior specification by the syn-
chronous, timed or asynchronous traces of automata
with variables [19]. These constrained automata are
derived from polychronous automata defined within
the polychronous model of computation and com-
munication [13]. Automata define a behavior using
transitions. A transition is composed of a source state,

2

a guard, an action, a target state. The guard and action
of a transition are defined using logical formulas. The
logical formula of the guard must be true for the
transition to occur.

Vocabulary

These multi-sorted logical formulas are defined on
the vocabulary W of AADL constants and of the states
S, variables V , connections and ports P defined in
the lexical scope of the denoted AADL object. An
identifier w in W has a type T = typeof (w) and
is valuated on the corresponding domain DT , e.g.,
Booleans, integers or reals, D ⊇ B ∪ Z ∪R. We write
Dx for the value domain of a typed identifier x. The
domain of a port identifier p of type T is defined by
Dp = D⊥T = DT ∪ {⊥}. The bottom sign ⊥ denotes
the absence of a value at the given step of execution.
A port value is said absent if the port is not frozen
and its value is neither read or written.

Formulas

The set of typed formulas FW on the vocabulary
W is an algebraic set of terms that denotes the
conditions, actions and constraints of an AADL object
of vocabulary W . It is defined by induction from:
• Constants 0 (false), to mean “never”, and 1

(true), to mean “always”. Always is discrete,
relative to the vocabulary W .

• Atoms w of W , to mean the value of an identifier
w.

• Unitary expressions:
– ˆp is the clock of p: a Boolean that denotes

the presence of a value on a frozen port p, i.e.,
p 6= ⊥;

– @p is the date of p: a real number that denotes
the time of an event present on a port p;

– v′ denotes the next value of a variable v;
– ¬f denotes the complement of formula f , for

all f in FW .
• Binary expressions f op g:

– for all Boolean formula f , g in FW and
Boolean operators ∨, ∧, ⇒, etc. (in particular,
f − g = f ∧ ¬g);

– for all numerical formula f , g in FW and
numerical operators +, −, ∗, /, %, =, <, etc.

A formula f is the denotation of a well-typed AADL
condition or action. It is hence assumed to be a
well-typed, multi-sorted, logical expression. Ill-typed
expressions do not define formula.

Model

A model m is a function W → DW from a
vocabulary W to its domain of valuation DW that is
true for a formula f of FW , written m |= f . A timed
model m@ is a function W → R×DW associating also

each event with a date, that the formula must satisfy
as well.

Automaton

The meaning of a behavior annex is defined
by an incomplete automaton with variables A =
(SA, s0, VA, PA, TA, CA) defined by:
• SA, the set of states of the automaton A, s0 is

the initial state.
• VA, the set of local variables of the automaton A

(VA′ designates the set of next values v′ for all
v ∈ VA).

• PA, the set of ports of the automaton A, both
inputs IA and outputs OA, PA = IA ∪OA.

• FA is the set of Boolean formulas of A, defined
on the vocabulary WA = SA ∪ VA ∪ PA.

• The transition function TA ∈ SA×FA → FA×SA

defines the transition system of A.
– The source formula of a transition is its guard
g, defined on VA and IA.

– The target formula of a transition is its action
f , defined from VA and PA.

• CA ∈ FA is the constraint of A. It must always
equal 0. It is a formula that denotes the invariants
(properties, requirements) of the denoted AADL
object in a form of a logical formula.

Since variables V are private to the automaton, a
transition function TA is equivalent to one in XA =
QA × FP → FP × QA over extended states QA =
SA × DVA for all valuations DVA =

∏
v∈VA

Dv of
the variables VA: for all transition (s, g, f, d) ∈ TA,
for all model m ∈ (VA + VA

′) → DVA , we have
((s,m(VA)),m(g),m(f), (d,m(VA

′)) ∈ XA and, for
all v′ ∈ VA′ undefined in f , m(v′) = m(v).

The role of a constraint formula such as ˆa ∧ ˆb = 0
is to guarantee a property by all models of the incom-
plete automaton.

Properties

• The control clock 1A of an automaton A is
defined by the sum (union) of its port clocks
1A =

∑
p∈PA

ˆp.
• The trigger tickA(s) =

∑
(s,g,f,d)∈TA

(g) of a
state s is defined by the upper bound of guard
formulas g from s.

• The stuttering clock of a state s is defined by
τA(s) = 1A − ((s ∗ CA) + tickA(s)). It means
that an automaton A is silent in state s if and
only if its model m satisfies the constraint CA in
state s and no guard can be triggered from s with
m.

Product

The synchronous product of two au-
tomata A = (SA, s0, VA, PA, TA, CA) and
B = (SB , t0, VB , PB , TB , CB) is defined by

3

A | B = (SAB , (s0, t0), VAB , PAB , TAB , CAB)
with SAB = SA × SB , VAB = VA ∪ VB ,
PAB = PA ∪ PB , CAB = CA ∨ CB , TAB =
{((s1, t1), g1 ∧ g2, f1 ∧ f2, (s2, t2)) | (s1, g1, f1, t1) ∈
TA ∧ (s2, g2, f2, t2) ∈ TB}.

Product is commutative, associative, has neutral
element ({s}, s, ∅, ∅, ∅, 0) and is idempotent for de-
terministic automata.

Small step

The model m of a transition in an automaton A
consists of a pre-condition pre(m) defined on input
ports I → D⊥I and state variables V → DV and a post
condition post(m) defined on output ports O → D⊥O
and next values of variables V ′ → DV .

A small step of an automaton A from state s to
state t is defined by a model m of A that satisfies its
constraint CA, written m |= ¬CA, and both the guard
g and action f of a transition (s, g, f, t) of A, written
m |= g ∧ f .

Big step

Let n > 1, q1 = (s1, r1) and qn = (sn, rn) two
extended states of an automaton A with complete
states s1, sn ∈ SA and variable valuations r1, rn ∈
DVA ' VA → DVA

(note that it may be the case that
qn = q1). A big step of automaton A from s1 to sn
is defined by a model m ∈ PA → D⊥PA

that, for all
1 ≤ i < n satisfies:
• pre ri+1(v) = post ri(v′) for all v ∈ VA
• mi = ri]m
• mi |= ¬CA

• (si, gi, fi, si+1) ∈ TA and mi |= gi ∧ fi
• pre ri(v) = post ri(v′) for all v′ ∈ V ′A not

occurring in fi and gi
• si is an execution state if 1 < i < n (an execution

state is a non observable, internal state—see
Section IV).

We write m, s1 |= A, sn to mean that m is the model
of a big step of A from s1 to sn.

Synchronous and asynchronous trace

A synchronous trace B ∈ PA → (D⊥PA
)∗ of an

automaton A is a finite sequence of valuation over PA

obtained by concatenating the codomains of successive
(big) steps. The length of B is denoted |B|. The set of
synchronous traces of an automaton A from its initial
state s0 is defined as:

T (A, s0) = {B ∈ PA → (D⊥PA
)∗ | 0 ≤ i < |B|,

mi, si |= A, si+1 ∧ ∀x ∈ dom(B), (B(x))i = mi(x)}

An asynchronous trace B# ∈ PA → (DPA
)∗ is

the abstraction of a synchronous trace B ∈ PA →
(D⊥PA

)∗ obtained by the removal of all absence marks
⊥. For a sequence s in (D⊥)∗, we denote by s/⊥ the
projection of s on D∗. The set of asynchronous traces

of an automaton A from its initial state s0 is defined
as:

T#(A, s0) = {B ∈ PA → (DPA
)∗ |

C ∈ T (A, s0) ∧ ∀x ∈ dom(B), B(x) = C(x)/⊥}

Timed step and timed trace

A timed step of an automaton A from state s to state
t is defined by a timed model m@ defined on WA that
satisfies its constraint and the guard g and action f of
a transition (s, g, f, t) of A. For all w in WA, m@(w)
refers to the value of w in m@ and m@(@w) refers to
the date of w in m.

A timed trace B@ ∈ PA → (R × D⊥PA
)∗ of an

automaton A is the concatenation of the codomains
of successive timed steps (m@

i)i≥0 of A such that for
all 0 ≤ i < j, for all x in dom(m@

i), for all y in
dom(m@

j), m
@
i (@x) < m@

j (@y). A timed trace B@

is therefore the refinement of a synchronous trace B ∈
PA → (D⊥PA

)∗ associating each event in B with a date.

IV. BEHAVIOR ANNEX MODEL

The behavior annex provides an extension to AADL
to associate functional behavior specifications with
AADL components. A behavior is expressed by tran-
sition systems with conditions and actions [2]. They
can be refined to simulate and define the functional
behavior of the AADL component using an imperative
action language.

This section first presents how to formally express
the meaning of a behavior annex using an automa-
ton. Then, the constituents of the behavior annex
are defined (transition system, action and expression
language, etc.) and their formal semantics given.

A. Formalization using the constrained automata

The meaning of a behavior annex is defined by the
axiomatic, denotational and operational interpretation
of constrained, incomplete, automata with variables
A = (SA, s0, VA, PA, TA, CA) such as defined in
Section III. The sets SA, VA, PA represent the states
(including the initial state s0), variables and ports of
A. The guard, action and constraints of its transitions
TA and constraints CA are denoted by multi-sorted
logical formula FA.
FA is defined over the vocabulary WA available in

the scope of a behavior annex: AADL value constants,
port, state, and variable names. They are combined
using AADL logical operators and numeric operators.
Operators that are specific to the model of computation
and communication of a given behavior annex are ˆp,
a Boolean value to mean the presence of a value on
port p under synchronous interpretation (i.e., p 6= ⊥);
and @p, a numeric value to mean the time of an event
on p, under timed interpretation.

The transition system of an automaton A is defined
by the function TA ∈ SA × FA → FA × SA whose

4

Figure 3. Overview of the ACC transition system with operation states, behavior conditions and variables [6]

quadruples (s, g, a, t) define the source state s, guard
formula g, action formula a and target state t of a
specified transition.

B. Automaton

The AADL behavior annex defines an extended
automaton BA described by three sections: variables
declarations, states declarations, and transitions decla-
rations. This automaton BA of the behavior annex is
not to be confused with the automaton A interpreted
to give its meaning to a behavior annex. On the one
hand, we have BA, an automaton which is part of the
behavior annex, and on the other hand A, an automaton
which is used to express the meaning of the whole
behavior annex.

As shown in Figure 4, the automaton BA
of a behavior_annex instance is defined
on the vocabulary consisting of its private
variables behavior_variable, of its
states behavior_state, and ports of its
parent component. Its transition system TBA

is the union of the transitions specified by a
behavior_transition.

behavior_annex ::=
[variables { behavior_variable }+]
[states { behavior_state }+]
[transitions { behavior_transition }+]

Figure 4. Constituents of the behavior annex syntax for the
transition system.

1) Variables section: The variables section of the
transition system of a behavior annex declares iden-
tifiers that represent variables with the scope of the
behavior annex subclause. Local variables can be used
to keep track of intermediate results within the scope
of the annex subclause. They may hold the values
of out parameters on subprogram calls to be made
available as parameter values to other calls, as output
through enclosing out parameters and ports, or as
value to be written to a data component in the AADL
specification. They can also be used to hold input
from incoming port queues or values read from data
components in the AADL specification. They are not

persistent across the various invocations of the same
behavior annex subclause.

2) States section: The states section declares all the
states of the automaton. Some states may be qualified
as initial state (thread halted), final state (thread
stopped), or complete state (thread awaiting for
dispatch), or combinations thereof. A state without
qualification is referred to as execution state. A
behavior automaton starts from an initial state and
terminates in a final state. A complete state acts as a
suspend/resume state out of which threads and devices
are dispatched. Complete states thus correspond (with
initial and final states) to the observable states of the
behavior, in which computations are “paused”, inputs
read and outputs produced.

behavior_transition ::=
[transition_identifier
[[behavior_transition_priority]] :]
source_state_identifier
{ , source_state_identifier }*
-[behavior_condition]->

destination_state_identifier
[behavior_action_block] ;

Figure 5. Elements of the behavior annex syntax for transitions.

3) Transitions section: The transitions section de-
fines transitions from a source state to a destination
state. Transitions in a behavior automaton represent
an execution sequence within a thread. A transition
out of a complete state is initiated by a dispatch once
its condition is satisfied. Transitions can be guarded by
dispatch or execute conditions, and can have actions.
Figure 5 presents the syntax used in the behavior annex
for transitions.

Dispatch conditions explicitly specify dispatch trig-
ger conditions out of a complete state. A dispatch
condition is a Boolean expression that specifies the
logical combination of triggering events: arrival of an
event or event data on an event port or an event data
port, receipt of a call on a provided subprogram access,
or timeout event.

Execute conditions specify transition conditions out
of an execution state to another state. They effectively
select between multiple transitions out of a given

5

state to different states. These conditions are logical
expressions based on component inputs, subcompo-
nent outputs, and values of data components, state
variable values, and property constants. They can also
result in catching a previously raised execution timeout
exception.

If transitions have been assigned a priority num-
ber, then the priority determines the transition to be
taken. The higher the priority number is, the higher
the priority of the transition is. If more than one
transition out of a state evaluates its condition to true
and no priority is specified, then one transition is
chosen non-deterministically. For multiple transitions
with the same priority value the selection is also
non-deterministic. Transitions with unspecified priority
have the lowest one.

Each transition can have actions. Actions can be
subprogram calls, retrieval of input and sending of
output, assignments to variables, read/write to data
components, and time consuming activities. An action
is related to the transition and not to the states: if
a transition is taken, the sequence of actions is per-
formed and then the state specified as the destination
of the transition becomes the new current state.

4) Transition semantics: States of a behavior annex
transition system can be either observable from the
outside (initial, final or complete states), that
is states in which the execution of the component is
paused or stopped and its outputs are available; or non
observable execution states, that is internal states. We
thus define two kinds of steps in the transition system
BA: small steps, that is non-observable steps from or
to an internal state; and big steps, that is observable
steps from a complete state to another, through a
number of small steps (see Section III).

The semantics of the AADL considers the observ-
able states of the automaton. The set SA of automaton
A (used to interpret the behavior annex) thus only
contains states corresponding to these observable states
and set TA big-step transitions from an observable state
to another (by opposition with small-step transitions
from or to an execution state).

A transition behavior_transition has
source state s = source_state_identifier.
Its guard formula g is defined by the translation
of the expression behavior_condition
as a logical formula. Its target state d =
destination_state_identifier is that
of the transition system defined by the semantic
function T (s, d) (defined Section IV-D) applied to its
action block behavior_action_block.

A transition_identifier, if present, is rep-
resented by a label L that names the clock of the
transition. It is a (virtual) event considered present
and true iff the guard formula of that transition holds
and the constraint of the automaton is enforced: the

transition (L : s, g, f, d) is equivalent to the transition
(s, g, f, d) with the constraint L⇔ (s ∧ g).

A behavior_transition_priority, if
present, enforces a deterministic logical order of
evaluation among transitions. A pair of transitions
(s[m], g1, f1, s1) and (s[n], g2, f2, s2) from a state
s and such that m > n (to mean that m has higher
priority than n) is equivalent to the transitions
(s, g1, f1, s1) and (s, g2 ∧ ¬g1, f2, s2): the guard
formula of a prioritized transition is subtracted to all
transition in the same state of lower or no priority.

C. Behavior Conditions

Behavior conditions that cause transitions may be
either execute conditions or dispatch conditions (see
Figure 6 for the syntax).

Execute conditions are Boolean-valued expressions,
and may only be used in transitions leaving an ex-
ecution (or initial) state. State machines may never
‘stall’ in execution states; there must always be an
enabled, outgoing transition from an execution state.
The otherwise condition occurs when no other
execute condition off an execution state is true.

Dispatch conditions can only be associated with
transitions from a complete state. A thread sched-
uler evaluates dispatch conditions to determine when
threads are dispatched. A dispatch trigger condition
can be the arrival of events or event data on ports
(expressed as a disjunction of conjunctions) or timeout.

Periodic dispatches are always considered to be
implicit unconditional dispatch triggers on complete
states and handled by dispatch conditions without
dispatch trigger condition.

Dispatch can also be triggered by event arrival at the
predeclared Stop port. Timeout catch is a dispatch
trigger condition that is raised after the specified
amount of time since the last dispatch or the last
completion is expired.

Semantics: A dispatch_condition is
represented by a guarding formula g that
is formed by referring to the clock p̂ of
the logical combination of ports specified
as its dispatch_trigger_condition.
An execute_condition is represented
by a guarding formula that encodes its
logical_value_expression using the current
state of its persistent variables V . The otherwise
clause is handled as the guard of least priority. It is
hence defined by (ˆs− tickA(s)), which differs from
the stuttering clock of s, τA(s).

In the case of a time-triggered dispatch, when the
dispatch trigger condition of an on dispatch clause
is empty, the Boolean true is assumed, but only in the
scope of the denoted object. It means that the dispatch
condition is considered to be present as soon as time-

6

behavior_condition ::= execute_condition
| dispatch_condition

execute_condition ::= logical_value_expression
| otherwise

dispatch_condition ::= on dispatch [dispatch_trigger_condition] [frozen (frozen_ports)]

dispatch_trigger_condition ::= dispatch_trigger_expression | stop | timeout_catch
dispatch_trigger_expression ::= dispatch_conjunction { or dispatch_conjunction }*
dispatch_conjunction ::= port_identifier { and port_identifier }*
timeout_catch ::= timeout [[(port_identifier { or port_identifier }*)] behavior_time]

behavior_action_block ::= { behavior_actions } [timeout behavior_time]
behavior_actions ::= behavior_action | behavior_action_sequence | behavior_action_set
behavior_action_sequence ::= behavior_action { ; behavior_action }+
behavior_action_set ::= behavior_action { & behavior_action }+

behavior_action ::= basic_action
| behavior_action_block
| if (logical_value_expression) behavior_actions
{ elsif (logical_value_expression) behavior_actions }*
[else behavior_actions] end if
| for (element_identifier in element_values) { behavior_actions }
| forall (element_identifier in element_values) { behavior_actions }
| while (logical_value_expression) { behavior_actions }
| do behavior_actions until (logical_value_expression)

basic_action ::= assignment_action
| communication_action
| timed_action

Figure 6. Elements of the behavior annex syntax for conditions, actions and expressions

triggered and an event is to be handled (otherwise, it
can be regarded as silent, i.e., absent).

A timeout clause, if present, is denoted by the
dispatch of the virtual event port timeout, whose
trigger is associated with a real time constraint of
the parent component behavior action block. It can be
associated with a port list to reset timer from before
timing out by arrival of an event at listed port. The
parent component is responsible for triggering this
event by respecting the real time constraint behavior
time, if specified, as well as with the specified frozen
ports list, if present.

D. Action language

The action language of the behavior annex de-
fines actions performed during transitions. Actions
associated with transitions are action blocks that are
built from basic actions and a minimal set of con-
trol structures: sequences, sets, conditionals and loops
(see Figure 6 for the syntax). Action sequences are
executed in order, while actions in actions sets can be
executed in any order.

Basic actions can be assignment actions, communi-
cation actions or time consuming actions. Assignments
consist of a value expression and a target reference
(local variables, data components acting as persistent
state variables, or outgoing features such as ports and
parameters) for the value assignment, separated by the
assignment symbol “:=”.

Communication actions can be freezing the content
of incoming ports, initiating a send on an event, data,
or event data port, initiating a subprogram call or

catching a previously raised execution timeout excep-
tion.

Time consuming actions, or timed actions, can be
predefined computation actions. Computation actions
specify computation time intervals. An execution time-
out exception can be raised after any behavior action
block. Raising such a timeout event may trigger a
transition with a timeout catch execute condition.

Semantics: Let us recall that the transition system
T representing a behavior transition is defined by
T = (s, g, true, s′)

⋃
T ′. It has source state s and

a guard formula g. Its target state d is that of the
transition system T ′ defined by the semantic function
call encoding the behavior action block block as
T(s′, d)[behavior action block] = T ′. T ′ is con-
structed by recursively calling function T on the action
block’s sub-expressions.

The recursive function T(s, d)[behavior actions] =
T associates the action block behavior actions
guarded by a behavior condition of formula g, of
source and target states s and d, to a transition system
T . It is defined by case analysis on behavior actions:

• a behavior action sequence is represented by
concatenating the transition systems of its ele-
ments. For instance, T(s, d)[action1 ; action2]
is translated by the union T1

⋃
T2 of its tran-

sition systems T1 = T(s, e)[action1] and T2 =
T(e, d)[action2], by introducing a new execution
state e;

• a behavior action set is represented by compos-
ing the transition systems of its elements. For
instance, T(s, d)[action1 & action2] is translated

7

by the synchronous composition

T = (T1|T2)[(s1, s2)/s, (d1, d2)/d]

of its transition systems T1 = T(s1, d1)[action1]
and T2 = T(s2, d2)[action2], substituting the
composed states (s1, s2) and (d1, d2) by s and
d.

A behavior action is translated by case analysis of
its form:
• if (b) a1 else a2 end if is translated

by a guard formula g corresponding to
logical expression and returning the union

T = T1
⋃
T2

⋃
{(s, g, true, s1), (s,¬g, true, s2)}

of its transition systems T1 = T(s1, d)[a1] and
T2 = T(s2, d)[a2] where the guard formula g is
the translation of the logical value expression, b;

• while (b) { a } is translated by
the union T1

⋃
T2 of its transition

systems T1 = T(s1, s2)[a] and T2 =
{(s, h, true, s1), (s,¬h, true, d), (s2, h, true, s1),
(s2,¬h, true, d)} where the guard formula h is
the translation of the logical value expression, b;

• do a until (b) is translated by the union
T1

⋃
T2 of its transition systems T1 = [a] and

T2 = (s1, h, true, s), (s1,¬h, true, d) where the
guard formula h is the translation of the logical
value expression, b;

• forall (j in e) { a } can be translated by
the action set a1&. . .&an where ai results from
the substitution of j by the ith element value of
e in a.

• for (j in e) { a } can be translated by the
action sequence a1;. . .;an where ai results from
the substitution of j by the ith element value of
e in a.

A basic action is translated by case analysis of its
grammar’s sub-clauses:
• an assignment action to a variable v:=e is repre-

sented by updating v with e as T(s, d)[v := e] =
{(s, true, v′ = e, d)} where v′ represents the next
value of v;

• an output port action port !(value) is repre-
sented by an action formula that binds value to
port by T(s, d)[port !value] = {(s, true, port =
value, d)};

• an input port action port?(target) is represented
by an action formula that updates target to
port by T[port?target] = {(s, true, target ′ =
port , d)};

• a timed action of the form
computation(t1[..t2]) is a timing constraint
imposed on the execution time of the action
block. It can either be represented by a timing
property of the parent thread object or simulated

by a protocol interacting with the scheduler
using two virtual ports ps (start) and pf (finish)
to specify a delay of time between exclusive
occurrences of ps and pf , and to translate the
timing specification by T(s, d)(t1[..t2])] =
{(s, true, ps, c), (c, pf , true, d)} using a
complete state c and the timed constraint
@ps + t1 ≤ @pf + t2.

E. Expression language

The expression language is used to define expres-
sions, the results of which are used either as logical
conditions of transitions or conditional statements, or
as values for assignment actions. Expressions con-
sist of logical expressions, relational expressions, and
arithmetic expressions. Values of expressions can be
variables, constants or the result of another expression.
Variable expression values are evaluated from incom-
ing ports and parameters, local variables, referenced
data subcomponents, as well as port count, port fresh,
and port dequeue. Constant expression values are
Boolean, numeric or string literals, property constants
or property values.

V. RELATED WORK

Many related works have contributed to the for-
mal specification, analysis and verification of AADL
models and its annexes, hence implicitly or explic-
itly proposing a formal semantics of the AADL in
the model of computation and communication of the
verification framework considered.

The analysis language REAL [10] allows to define
structural properties on AADL models that are checked
inductively visiting the object of a model under ver-
ification. [9] presents an extension of this language
called LUTE which further uses PSL (Property Spec-
ification Language) to check behavioral properties of
models as well as a contract framework called AGREE
for assume-guarantee reasoning between composed
AADL model elements.

The COMPASS project has also proposed a frame-
work for formal verification and validation of AADL
models and its error annex [8]. It puts the emphasis
on capturing multiple aspects of nominal and faulty,
timed and hybrid behaviors of models. Formal verifi-
cation is supported by the nuSMV tool. Similarly, the
FIACRE framework [3] uses executable specifications
and the TINA model checker to check structural and
behavioral properties of AADL models.

RAMSES, on the other hand [7], presents the im-
plementation of the AADL behavior annex. Its im-
plementation OSATE proceeds by model refinement
and can be plugged in with Eclipse-compliant backend
tools for analysis or verification. For instance, the
RAMSES tools uses OSATE to generate C code for
OSs complying the ARINC-653 standard.

8

Synchronous modeling is central in [17], which
presents a formal real-time rewriting logic semantics
for a behavioral subset of the AADL. This semantics
can be directly executed in Real-Time Maude and
provides a synchronous AADL simulator (as well as
LTL model-checking). It is implemented by the tool
AADL2MAUDE using OSATE.

Similarly, Yang et al. [20] define a formal semantics
for an implicitly synchronous subset of the AADL,
which includes periodic threads and data port commu-
nications. Its operational semantics is formalised as
a timed transition system. This framework is used to
prove semantics preservation through model transfor-
mations from AADL models to the target verification
formalism of timed abstract state machine (TASM).

Our proposal carries along the same goal and fun-
damental framework of the related work: to annex
the core AADL with formal semantic frameworks to
express executable behaviors and temporal properties,
by taking advantage of model reduction possibili-
ties offered thanks to a synchronous hypothesis, of
close correspondence with the actual semantics of the
AADL.

Yet, we endeavour in an effort of structuring and
using them together within the framework of a more
expressive multi-rate or multi-clocked, synchronous,
model of computation and communication: that of
polychrony. Polychrony would allow us to gain ab-
straction from the direct specification of executable,
synchronous, specification in the AADL, yet offer
services to automate the synthesis of such, locally
synchronous, executable specification, together with
global asynchrony, when or where ever needed.

CCSL, the clock constraint specification language
of the UML profile MARTE [16], relates very much
to the effort carried out in the present document.
CCSL is an annotation framework to making explicit
timing annotation to MARTE objects in an effort to
disambiguate its semantic and possible variations.

CCSL actually provides a clock calculus of greater
expressivity than polychrony, allowing for the expres-
sion of unbounded, asynchronous, causal properties
between clocks (e.g. inf and sup).

While CCSL essentially is isolated as an annex of
the MARTE standard for specifying annotations, our
approach is instead to build upon the semantics of the
existing behavior annex and specify it within a poly-
chronous model of computation and communication.

Finally, the Behavior Language for Embedded Sys-
tems with Software (BLESS) [11], [12] was derived
from the behavior annex by adding non-executable
assertions to behavior to become a proof outline.
With human guidance, a proof engine transforms proof
outlines into deductive proofs that every execution
conforms to a formal behavior specification. Although
the formal semantics defined for BLESS are expressed

much differently than the semantics for behavior annex
defined here, they are not incompatible. We are en-
deavoring to merge the semantics so that deductively
proved BLESS behaviors can also be analyzed with
polychronous tools such as Polychrony.

Our previous work demonstrated that all concepts
and artefacts of the AADL could, as specified in
its normative documents, be given a formal speci-
fication in the polychronous model of computation
and communication [15], [23], [14], [21], [22], [5],
implemented by mean of its import and simulation in
the Eclipse project POP’s toolset available from the
Polarsys Industry Working Group4.

VI. CONCLUSION

In this paper, we propose a formal semantics for a
significant subset of the behavioral specification annex
of the Architecture Analysis and Design Language
(AADL). This annex allows one to attach a behavior
specification to any components of a system modeled
using the AADL, and can be then analyzed for differ-
ent purposes which could be, for example, the verifi-
cation of logical, timing or scheduling requirements.

The addressed subset includes the transition system
(state variables, states and transitions), the conditions
that can be attached to transitions, the action language
allowing to describe actions to be computed when a
transition is fired and the expression language, used
for logical conditions and assignment actions.

The semantics we presented for this subset relies on
constrained automata (automata with variables derived
from polychronous automata) and supports unambigu-
ous reasoning, formal verification and simulation of
the modeled system.

In future work, we will provide semantics for the
remaining subset of the behavior specification annex
of the AADL (mainly the synchronization protocols
allowing to send and receive execution request in a
client-server configuration). We will also implement
the semantics of the behavior specification annex
through a model transformation from the annex to the
Signal language, in which the constrained automata are
already implemented.

Acknowledgements

This work was partly funded by Toyota Informa-
tion Technology Center (ITC) and by INRIA D2T’s
standardization support program. The authors wish to
thank Pierre Dissaux and the SAE sub-committee on
the AADL for supporting this work with valuable
comments on the model and method presented in this
paper.

4http://www.polarsys.org/projects/polarsys.pop

9

REFERENCES

[1] Aerospace Standard AS5506A: Architecture Analysis and De-
sign Language (AADL), 2009.

[2] Aerospace Standard AS5506/2: SAE Architecture Analysis
and Design Language (AADL) Annex Volume 2, Annex D:
Behavior Model Annex, 2011.

[3] Bernard Berthomieu, Jean-Paul Bodeveix, Silvano Dal Zilio,
Pierre Dissaux, Mamoun Filali, Pierre Gaufillet, Sebastien
Heim, and François Vernadat. Formal Verification of AADL
models with Fiacre and Tina. In ERTSS 2010 - Embedded
Real-Time Software and Systems, pages 1–9, TOULOUSE
(31000), France, May 2010.

[4] Loı̈c Besnard, Étienne Borde, Pierre Dissaux, Thierry Gautier,
Paul Le Guernic, and Jean-Pierre Talpin. Logically timed spec-
ifications in the AADL : a synchronous model of computation
and communication (recommendations to the SAE committee
on AADL). Technical Report RT-0446, INRIA, April 2014.

[5] Loı̈c Besnard, Adnan Bouakaz, Thierry Gautier, Paul Le Guer-
nic, Yue Ma, Jean-Pierre Talpin, and Huafeng Yu. Timed
behavioural modelling and affine scheduling of embedded
software architectures in the AADL using Polychrony. Science
of Computer Programming, pages 54–77, August 2015.

[6] Loı̈c Besnard, Thierry Gautier, Paul Le Guernic, Clément Guy,
Jean-Pierre Talpin, Brian R. Larson, and Étienne Borde. For-
mal Semantics of Behavior Specifications in the Architecture
Analysis and Design Language Standard. Research Report
8950, INRIA, August 2016.

[7] Étienne Borde, Smail Rahmoun, Fabien Cadoret, Laurent
Pautet, Frank Singhoff, and Pierre Dissaux. Architecture
models refinement for fine grain timing analysis of embedded
systems. In 25nd IEEE International Symposium on Rapid
System Prototyping, RSP 2014, New Delhi, India, October 16-
17, 2014, pages 44–50, 2014.

[8] Marco Bozzano, Roberto Cavada, Alessandro Cimatti, Joost-
Pieter Katoen, Viet Yen Nguyen, Thomas Noll, and Xavier
Olive. Formal verification and validation of AADL models.
In Proc. of Embedded Real Time Software and Systems Con-
ference, 2010.

[9] Darren Cofer, Andrew Gacek, Steven Miller, Michael W.
Whalen, Brian LaValley, and Lui Sha. Compositional veri-
fication of architectural models. In Proceedings of the 4th
International Conference on NASA Formal Methods, NFM’12,
pages 126–140, Berlin, Heidelberg, 2012. Springer-Verlag.

[10] Olivier Gilles and Jerôme Hugues. Expressing and enforcing
user-defined constraints of aadl models. 2014 19th Inter-
national Conference on Engineering of Complex Computer
Systems, 0:337–342, 2010.

[11] Brian R. Larson, Patrice Chalin, and John Hatcliff. BLESS:
Formal specification and verification of behaviors for embed-
ded systems with software. In Proceedings of the 2013 NASA
Formal Methods Conference, volume 7871 of Lecture Notes
in Computer Science, pages 276–290. Springer, 2013.

[12] Brian R. Larson, Yi Zhang, Stephen C. Barrett, John Hatcliff,
and Paul L. Jones. Enabling safe interoperation by medical
device virtual integration. IEEE Design and Test, October
2015.

[13] Paul Le Guernic, Thierry Gautier, Jean-Pierre Talpin, and
Loı̈c Besnard. Polychronous Automata. In TASE 2015, 9th
International Symposium on Theoretical Aspects of Software
Engineering, pages 95–102, Nanjing, China, September 2015.
IEEE Computer Society.

[14] Yue Ma, Huafeng Yu, Thierry Gautier, Paul Le Guernic, Jean-
Pierre Talpin, Loı̈¿ 1

2
c Besnard, and Maurice Heitz. Toward

polychronous analysis and validation for timed software ar-
chitectures in aadl. In The Design, Automation, and Test
in Europe (DATE) conference, pages 1173–1178, Grenoble,
France, March 2013.

[15] Yue Ma, Huafeng Yu, Thierry Gautier, Jean-Pierre Talpin,
Loı̈c Besnard, and Paul Le Guernic. System Synthesis from
AADL using Polychrony. In Electronic System Level Synthesis
Conference, June 2011.

[16] Frédéric Mallet, Julien DeAntoni, Charles André, and Robert
de Simone. The clock constraint specification language for

building timed causality models. Innovations in Systems and
Software Engineering, 6(1):99–106, 2010.

[17] Peter Csaba Ölveczky, Artur Boronat, and José Meseguer.
Formal semantics and analysis of behavioral aadl models in
real-time maude. In Proceedings of the 12th IFIP WG 6.1
International Conference and 30th IFIP WG 6.1 International
Conference on Formal Techniques for Distributed Systems,
FMOODS’10/FORTE’10, pages 47–62, Berlin, Heidelberg,
2010. Springer-Verlag.

[18] Bran Selic and Sébastien Gérard. Modeling and Analysis of
Real-Time and Embedded Systems with UML and MARTE:
Developing Cyber-Physical Systems. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2013.

[19] Markus Skoldstam, Knut Akesson, and Martin Fabian. Mod-
eling of discrete event systems using finite automata with
variables. In 46th IEEE Conference on Decision and Control,
2007, pages 3387–3392, 2007.

[20] Zhibin Yang, Kai Hu, Jean-Paul Bodeveix, Lei Pi, Dianfu Ma,
and Jean-Pierre Talpin. Two formal semantics of a subset
of the AADL. In 16th IEEE International Conference on
Engineering of Complex Computer Systems, ICECCS 2011,
Las Vegas, Nevada, USA, 27-29 April 2011, pages 344–349,
2011.

[21] Huafeng Yu, Yue Ma, Thierry Gautier, Loı̈c Besnard, Paul
Le Guernic, and Jean-Pierre Talpin. Polychronous modeling,
analysis, verification and simulation for timed software archi-
tectures. Journal of Systems Architecture, 59(10):1157–1170,
November 2013.

[22] Huafeng Yu, Yue Ma, Thierry Gautier, Loı̈c Besnard, Jean-
Pierre Talpin, Paul Le Guernic, and Yves Sorel. Exploring
system architectures in AADL via Polychrony and SynDEx.
Frontiers of Computer Science, 7(5):627–649, October 2013.

[23] Huafeng Yu, Yue Ma, Yann Glouche, Jean-Pierre Talpin, Loı̈c
Besnard, Thierry Gautier, Paul Le Guernic, Andres Toom, and
Odile Laurent. System-level co-simulation of integrated avion-
ics using Polychrony. In ACM Symp. on Applied Computing,
pages 354–359, TaiChung, Taiwan, March 2011.

10

