Using Hyperspectral Remote Sensing Identification of Wheat Take-All Based on SVM

Abstract : Wheat take-all is quarantine diseaseand took place more and more severer in recent years, It is important to monitor it effectively. This article using hyperspectral remote sensing, through the different levels of the incidence of wheat take-all canopy spectral reflectance data collection analysis and processing, using support vector machine(SVM) classification method to build Wheat Take-all disease level prediction model for the prediction and prevention for wheat take-all to provide technical support. Results shows that the wheat canopy spectral reflectance change significantly under the influence of the disease; through data analysis, choose 700~900nm wavelength band training as sensitive to model the performance of the best results; Upon examination, constructed the forecasting model based on this band to predict when the predicted value and the actual value of the correlation coefficient up to 0.9434. The results of this study will not only provide theoretical and technical support for wheat no-destructive detection and safety production, but also shed light on the development of novel strategy to detect and control crop pest and disease, which has great significance to the food safety.
Type de document :
Communication dans un congrès
Daoliang Li; Yingyi Chen. 8th International Conference on Computer and Computing Technologies in Agriculture (CCTA), Sep 2014, Beijing, China. IFIP Advances in Information and Communication Technology, AICT-452, pp.23-30, 2015, Computer and Computing Technologies in Agriculture VIII. 〈10.1007/978-3-319-19620-6_3〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01420250
Contributeur : Hal Ifip <>
Soumis le : mardi 20 décembre 2016 - 14:04:00
Dernière modification le : vendredi 1 décembre 2017 - 01:16:51
Document(s) archivé(s) le : lundi 20 mars 2017 - 17:47:06

Fichier

978-3-319-19620-6_3_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Hongbo Qiao, Hongtao Jiao, Yue Shi, Lei Shi, Wei Guo, et al.. Using Hyperspectral Remote Sensing Identification of Wheat Take-All Based on SVM. Daoliang Li; Yingyi Chen. 8th International Conference on Computer and Computing Technologies in Agriculture (CCTA), Sep 2014, Beijing, China. IFIP Advances in Information and Communication Technology, AICT-452, pp.23-30, 2015, Computer and Computing Technologies in Agriculture VIII. 〈10.1007/978-3-319-19620-6_3〉. 〈hal-01420250〉

Partager

Métriques

Consultations de la notice

26

Téléchargements de fichiers

13