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Abstract

The use of regenerative braking is a key factor to reduce the energy consump-
tion of a metro line. In the case where no device can store the energy produced
during braking, only the metros that are accelerating at the same time can ben-
efit from it. Maximizing the power transfers between accelerating and braking
metros thus provides a simple strategy to benefit from regenerative energy with-
out any other hardware device. In this paper, we use a mathematical timetable
model to classify various metro energy optimization problems studied in the
literature and prove their NP-hardness by polynomial reductions of SAT. We
then focus on the problem of minimizing the global energy consumption of a
metro timetable by modifying the dwell times in stations. We present a greedy
heuristic algorithm which aims at locally synchronizing braking trains along the
timetable with accelerating trains in their time neighbourhood, using a non-
linear approximation of energy transfers. On a benchmark of the litterature
composed of six small size timetables, we show that our greedy heuristics per-
forms better than CPLEX using a MILP formulation of the problem with a
linear approximation of the objective function. We also show that it runs ten
times faster than a state-of-the-art evolutionary algorithm, called the covariance
matrix adaptation evolution strategy (CMA-ES), using the same non-linear ob-
jective function on these small size instances. On real data leading to 10000
decision variables on which both MILP and CMA-ES do not provide solutions,
our dedicated algorithm computes solutions with a reduction of energy con-
sumption ranging from 5% to 9%.
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1. Introduction

Energy consumption is a major issue for the future and has been the subject
of increasing research activities over the last years. The total energy consumed
in transportation is estimated to represent 27% of the world energy production
[2]. In 2006, the London Underground consumed 1173 GW.h [3], representing
2.8% of the Great London total electricity consumption [4]. The transportation
field is thus of particular importance and industrial companies try to optimize
energy by different means, in particular in mass rapid transit such as metros.

Nowadays, almost all metros have energy regenerative braking systems.
These devices turn the electric motors into generators during braking, and pro-
duce electric energy. It has been shown that the raw energy discount provided
by this technology is about 16.5% [5]. Some metros can directly use their own
regenerative energy. Super capacitors allow much faster loads and unloads com-
pared to classical batteries, and a metro equipped with super capacitors is able
to collect the energy during braking, and give it back to the engine for its own
accelerations [6]. The metros that cannot store their own regenerative energy
can return it to the DC electrical network, but with important losses on long
distances. The electrical substations (ESS) are the devices that convert AC to
DC to feed the metro line. Some ESS are revertible and can convert the regen-
erative power of trains to AC power. In this case, the energy regenerated by
metros can be used in other parts of the metro line without important loss, or
be sold back to the electricity provider. However, super capacitors, as well as
revertible ESSs, are expensive equipment to buy and maintain, and may not be
economically justified.

Another way to use the regenerative energy returned to the DC line, without
requiring any extra equipment, is to synchronize the braking of a metro with
the acceleration of another metro in its close neighbourhood on the DC line.
This synchronization can be done, for instance, by modifying the departure and
arrival times of the metros in the stations, in order to shift the acceleration
phases to the deceleration phases of some other metros in their neighbourhood.
The objective function may then combine two criteria: the minimization of
power peaks, and the minimization of the global energy consumption during the
day. A power peak occurs when too many metros are accelerating at the same
time, which may cause two problems. First, a metro network is sized with some
maximum power capacity. When the demand exceeds that threshold, a control
system prevents the destruction of the electric equipment by a momentary shut
down of a part of the network, dropping the quality of service. Second, more
than 80% of metro companies pay their energy provider for a certain amount
of energy per given time period, typically around 15 minutes [7]. When the
energy consumed exceeds a certain limit, the metro company pays a fine to the
electricity provider.



Albrecht has shown in [8] that it is possible to reduce power peaks by uti-
lizing the reserve time of metros, i.e. the remaining time that a metro has to
finish its journey without disturbing the network. It is however tricky to use the
reserve time for energy optimization reasons since it is primarily used for traffic
regulation. Moreover, this optimization is done by modifying metro interstation
times, which may be difficult to implement in a real-time application. Never-
theless, the implementation of this method using a genetic algorithm showed
good results in [8]. Kim et al. have proposed in [9] to optimize the metro de-
parture times in terminals instead of reserve times. They have partially solved
a simplified model of this problem using MILP. However, their approximation
is not precise enough for a real application since regular timetables are typically
second-accurate, whereas their model has a precision of 15 seconds. In [10],
Chen et al. have described a precise electrical network simulator, which leads to
an accurate evaluation of the metro power demands. They have managed to re-
duce the maximum power peak using a genetic algorithm that chooses between
only either short or long stopping times for metros in each station.

Concerning the minimization of the total energy consumption on the line,
Nasri et al. have shown in [11] that it is possible to decrease the energy con-
sumption by modifying the dwell times, i.e. the stopping times in the stations.
Their model uses an exact energy function and an accurate discretization of time
at the scale of one second. This work provides an interesting proof of concept
but has only be tested on a pilot system, consisting of 4 trains and 4 stations.
On a more realistic size problem, Pefa et al. [12] have proposed a MILP model
to optimize a night shift timetable for the metro of Madrid by maximizing the
overlap of braking and acceleration phases of different metros. Their measure-
ments on field have shown that the optimized timetable could reduce the global
energy consumption by 3%.

In this paper, we focus on the problem of minimizing the global energy con-
sumption of a metro timetable by modifying the dwell times in stations. We
present a heuristic algorithm which gives better results than general purpose
optimization methods. In particular, we compare our algorithm with MILP
and with a state-of-the-art evolutionary algorithm called the covariance matrix
adaptation evolution strategy (CMA-ES) [13]. The MILP formulation of Pena
et al. [12] maximizes the overlapping time between accelerating and braking
phases and not directly the global energy consumption. Also, to limit the num-
ber of binary variables, their model considers only one-to-one pairing between
braking and accelerating metros, whereas our objective function takes into ac-
count the redistribution of the regenerative energy to several accelerating met-
ros. We show that the MILP approximations of the objective function lead to
solutions of lesser quality, eventhough CPLEX [14] is able to prove the optimal-
ity of the computed solutions. Furthermore, this approach does not scale-up
to real data which lead to instances of 10000 decision variables by running out
of memory, while handled with our heuristics in 20 minutes. CMA-ES using
the same non-linear approximation as us does not scale up on real data either,
failing at evaluating the initial population objective functions. On small size in-
stances, our heuristic algorithm also performs better than CMA-ES mainly for



the implementation reason that our algorithm computes the objective function
incrementally .

The rest of the paper is organised as follows. Section 2 presents a math-
ematical model of metro timetables taking into account both time constraints
and energy optimization objectives. Section 3 uses this model to classify various
related problems of the literature, and prove their NP-hardness by polynomial
reductions of SAT. Then in Section 4 we model the instant power demand as
an electrical network which simulates the energy consumption of the metro line,
and describe in Section 5 a power flow approximation based on a distribution
matrix. We propose an algorithm to compute this power flow and use it as
an objective function for CMA-ES and in our heuristics. This formulation is
also used to derive the linear approximation of the objective function for MILP.
Section 6 describes our heuristics for minimizing the global energy consump-
tion of a metro line by modifying solely the dwell times in stations. Section
7 compares the results of this heuristics on a benchmark of six small size in-
stances, and shows that it gives better results than MILP and CMA-ES in both
computation time and quality of the solutions. The set of these instances is
available at http://lifeware.inria.fr/wiki/COR14/Bench. Then in Section
8 on real data, we show that the heuristics is able to reschedule two full timeta-
bles containing respectively 9585 and 7679 variables in 20 minutes. On these
two examples, the two other methods fail at giving a solution within 30 minutes,
CPLEX running out of memory and CMA-ES failing at computing its first iter-
ation, while the heuristics computes solutions which decrease the total amount
of energy consumed by respectively 5.15% and 7.54%. We also show that it is
possible to save up to 8.91% energy by increasing the tolerance on trip times
and headways.

2. Timetable Model

In this section, we define a generic mathematical model of metro timetabling
which will be used to:

1. define and classify different metro energy optimization problems from the
literature (Section 3),

2. define the related MILP models,

3. define the instant power demand function (Section 4 and 5),

4. and define our greedy heuristic algorithm (Section 6).

For the sake of simplicity, we assume that the metro line is composed of
N stations, S = {Si,..., Sx} and the metro timetable is represented as a se-
quence of M trips, with M being pair, T = (Tl,...,T%,T%H,...,TM). We
assume that the trips 77, ...,T% cross all stations in the upstream sequence,
(S1,...,SNn), and the trips T%_H, ..., T cross all stations in the downstream
sequence, (Sy,...,S1). We note Sy(s) the s* station crossed by the trip T},
i.e. station S, if 1 <t < % or station Sy_sy1 if % +1<t< M.



We assume that physical trains and crew have been allocated to trips before-
hand so that the model of timetable described here does not consider metros
depot movements, crew rostering, nor turnaround manoeuvres.

2.1. Variables

The variables are the dates of the departure and arrival times in stations for
each trip, the dates of the starting of the braking phase and of the ending of
the acceleration phase at each station for each trip. We consider that the time
domain I = {0,1,...,Ignp} is discrete, with a precision of 1 second.

e d; s € I is the departure time of the trip T, with 1 <¢ < M, at station
Si(s), with 1 <s < N —1,

o a; s € I is the arrival time of the trip T3, with 1 < ¢ < M, at station S(s),
with 2 < s < N,

o di¢ € I is the ending time of the acceleration phase of the trip Ty, with
1 <t < M, leaving station Si(s), with 1 <s < N —1,

° aé’fsk € I is the beginning time of the braking phase of the trip T3, with
1 <t < M, arriving at station S;(s), with 2 < s < N.

2.2. Auziliary Variables

To simplify the equations, it is useful to introduce the following auxiliary
variables as functions of the variables. These variables have the dimension of a
time in I:

e the interstation time for a given trip,

ity s =apsy1 —dps 1<t< M, 1<s<N-1,

e the dwell time, or stopping time, in a station for a given trip,

dwet,s:dt,s_at,s 1<t<M, 2<s<N-1,

e the total trip time,

N—
t?"tt = intm + (dwet’k + 'L-Tltt7k) = a¢,N — dt71 1 S t S M,
k=2

—

e the time interval, called headway, between two successive trips running in
the same direction in a given station,

hdwt,s:dt,s*dt—l,s t€[2, ]U[ +2,M]7 1<SSN

M, M
2 -1 =



e The duration of the acceleration phase for a given trip to leave a given
station,
accs =diy —dps 1<t< M, 1<s<N-—1,

It is worth noticing that every acceleration phase occurs right after a dwell
time. Shifting the starting time of an acceleration phase d;s without
modifying its length acc; s is thus equivalent to modify the length of the
adjacent dwell time dwe; s.

e the duration of the braking phase for a given trip before arriving at a given
stations,
brkt,szatys—ai’,’;k 1<t< M, 2<s<N.

2.8. Constraints
Each trip t must leave its departure terminal within some bounds set by the
metro company according to the quality of service provided to passengers,

dig <dpy <diy 1<t< M. (1)

The interstation times are bound according to the different speeds — e.g. eco-
nomical, nominal or full throttle — a metro can take,

intys <intys <intp, 1<t<M,1<s<N-1, (2)

The dwell times are bound according to a minimum quality of service for the
passengers,

dwes s < dweys <dwers 1<t<M,2<s<N-1, (3)

The acceleration and braking phases are also bound according to the possible
interstation times for a given station :

accps <accps <accr, 1<t<M, 1<s<N-1, (4)

brkgs <brkys <brk,s 1<t<M,2<s<N, (5)

The global trip time is also bound to ensure the feasibility of the timetable and
the quality of service to the passengers,

trty <trty <trf; 1<t < M, (6)

Finally, the headways are bound according to security requirements and quality
of service,

M M

It is worth noticing that the headways must be checked at each station. The tol-
erances on headways differ according to the hour of the day. During peak hours,
the headways are small and the tolerance for stretching them is tight. During
off peak hours, the tolerances are higher and more important modifications of
the timetable are possible, leading to potentially greater energy savings.

hdwm < hdwm < hdwm te [2,



2.4. Objective Function

All the constraints of the timetable model shown up to now are pretty trivial
bound linear constraints. The difficulty of energy optimization problems lies in
the definition of the objective function, and more precisely of the instant power
demand P; at each time.

Given an appropriate definition of P;, the objective can then be to minimize
either the global energy consumption Gy of all trips,

IgnD

Grr= )Y P, (8)
1=0

or the maximum power peak
PPTT = maxR-. (9)
icl

It is worth noticing that the objective function PPy is widely used in the
literature [8, 9, 10, 15, 16], but that a more realistic function would be the
number of times that the power exceeds a certain threshold Py 4x,

CPry =card(i | P; > Pyax). (10)

This function is more in accordance with the system of fines paid to the elec-
tricity provider when the quota is exceeded.

The most accurate evaluations of P; are obtained by electrical simulators.
In Section 4 we describe an instant power model, from which we derive two
approximations: a non-linear approximation based on a power flow used in our
algorithm and the linear approximation used in [12]. Before that, the timetable
model can already be used to classify several variants of the problem studied in
the literature.

3. Classification and Complexity of Metro Timetabling Energy Opti-
mization Problems

3.1. Problem Classification

As mentioned in the introduction, research is active for optimizing energy
in the field of railways and some attempts to classify the studied problems have
been made. Xun et al. [17] proposed a classification of the methods used to
solve the problems and Li et al. [18] listed without apparent classification some
papers in the literature, detailing the decision variables or the algorithms used.
To date, there is no formal classification of metro energy optimization problems.
We propose a classification based on the previous timetable by a triple

(G/PP/CP, dep/dwe/int, sim/nonlin/lin)

denoting the choice of the objective function (G, PP or CP), the decision
variables (departure times, dwell times, interstation times or any combination



Problem Equations References

(PP, dwe, sim) 3,6,7,4,5,9, Chen et al. [10]
(PP,dep — dwe,sim) 1,3,6,7,4,5 9 Sanso et al. [15]
(PP,dwe — int,sim) 2,3,6,7,4,5 9 Albrecht et al. [§]
(PP, dep,lin) 1,6,7,9 Kim et al. [9, 16]

(G, dwe, nonlin) 3,6,7,8 Fournier et al. [1, 19]
(G, dwe, sim) 3,6,7,8 Nasri et al. [11]

(G, dep — dwe, lin) 1,3,6,7,8 Pena et al. [12]
(G,int, sim) 2,6,7,4,5,8 Bocharnikov et al. [20]

Table 1: Some metro timetabling energy optimization problems from the literature, classified
by the problem triple they solve and the corresponding timetable equations.

of them) and the instant power demand evaluation (by an electrical simulator,
a non-linear approximation or a linear approximation).

Table 1 classifies different problems studied in the literature using these triples.
In this paper, we shall focus on the problems (G, dwe, lin) and (G, dwe, nonlin),
that is, we focus on the problems of modifying solely the dwell times in order to
minimize the global energy consumption of a metro line, evaluated using either
a linear or a non-linear approximation. In this class of problems, the departure
times dep;, the interstation times int; s, and the braking and acceleration phases
brk; s and acc; s are given. The modification of the dwell times modifies the
arrivals a; s and departures d; s in stations, and hence the auxiliary variables.

3.2. Complexity

First of all, one can remark that in absence of objective function, the time-
table satisfiability problem is polynomial since all the equations of the timetable
model are linear. Caprara in et al. showed in [21] that minimizing the deviation
of a solution timetable comparing to an initial one to satisfy capacity or over-
taking constraints is NP-hard. Serafini et al. showed in [22] that the problem of
periodically scheduling trains with precedence constraints is NP-complete. Here
we show the NP-hardness of several energy optimization timetable problems by
polynomial reductions of SAT.

Theorem 1. The problem (G,dep,lin) is NP-hard.

Corollary 1. The problem (G, dep, nonlin) is NP-hard.

Corollary 2. The problem (G,dep — dwe — int,lin) is NP-hard.

The proofs are given in appendix. The idea of the proof of the first result is
to construct a polynomial reduction of SAT to a particular (G, dep, lin) problem.
A particular timetable is constructed such that all the acceleration phases can
be synchronized with the periodic braking phases of only one special metro x.



In this construction, it is possible to delay the departure time of each metro
different from xy by one time unit only. This ensures that one unit of energy is
saved at this time. A Boolean formula in conjunctive normal form (CNF) with
c clauses is then satisfiable if and only if ¢ units of energy can be saved in the
timetable.

Example 1. Let us consider the SAT formula (z2 V 23) A (x1 V —xs V x3) A
(—z1 V y). The constructed timetable contains four trips =g, z1, 2 and 3,
and is divided in three periods during which metro xy has the same behaviour.
For each braking phase of xg occurring at times 41, i and i3, either z1, zo or
x3 can be synchronized to save one energy unit. At each time unit, a metro is
either accelerating, consuming 1 energy unit, braking, producing 1 energy unit,
coasting or dwelling, producing or consuming nothing. Each trip departure time
can be delayed by one time unit. The formula is satisfiable if and only if for
each braking phase of z(, one other metro can synchronize its acceleration phase
with it. The timetable with the energy consumed or produced by each metro
at each time is shown in Table 2.

TT |io i1 dp i3 i4 is5|ic i7 is iy d10 11 |f12 f13 14 G15 f16 f17
|1 -10 0 0 0|1 -1 00 O Of1 -1.0 O 0 O
xz |0 O 1 0 -10/1 0 O0O0O-1 0|0 1 O O -1 0
>»|/1 0 0 0 -10/0 1 O0OO0O-1 0|1 O O 0 -1 0
zz|1 0 00 -10}1 0 00 -1 0|0 O 1 0 -1 0

Table 2: Timetable energy problem encoding the satisfiability of (x2 V 23) A (z1 V —z2 Vx3) A
(—z1 V x2). Each cell represents the power produced (-1) or consumed (1) by the trips z; at
each time. In this example, to save the 3 energy units produced by zg, and satisfy the SAT
formula in this encoding, it suffices to delay x3 by one time unit since z; and x2 already save
the 2 other energy units.

4. Instant Power Demand Model

The energy consumption of a metro line can be computed with an electrical
simulator. The electrical circuit is composed of the N stations, the electrical
substations (ESS) and the accelerating and braking trains at a given time.

The ESSs are electrical devices that convert the AC power provided by
the electricity provider to DC power, directly usable by metros. We assume
that they are not revertible, i.e. the regenerative braking can only be used by
accelerating metros, and that they are directly connected to the stations. Part
of the power provided by the ESSs is lost by Joule effects on the DC network.

Each station is connected to the next one by a resistive cable. The braking
metros are connected to the station to which they arrive and are modelled as an
ideal power source. The accelerating metros are connected to the station from
which they depart and are modelled as an ideal power sink. Figure 1 depicts the
circuit associated to a small network with five stations, three ESSs, one braking
metro and one accelerating metro.



Pg’i <0 P57i >0

Figure 1: Electrical circuit associated to a metro line with five stations at time i. It is
composed of three electric sub-stations in S7, S3 and S5, a braking metro arriving in Sy and
producing P> ;, and an accelerating metro departing from S5 and consuming Ps ;. The points
in the network are linked by resistive cables.

4.1. Network Parameters

The electrical properties of the metro line are fixed and given by the following
set of parameters valid at any time:

o VESS ¢ Rt is the fixed voltage supplied by the ESSs to the line. Typical
values are 750V [10] or 1500V [12].

e RESS ¢ Rt is the value of the internal resistance of the ESSs.

o R, € RT is the resistance of the electric cable of the metro network be-
tween the stations S; and Sy 1, for 1 < s < N — 1. This is computed
using the linear resistance equation R = %‘l, p being the resistivity of the
third rail, a its section and [ its length.

4.2. Timetable Parameters

P; ; € Ris the net power demand or production, involved by a metro, at time
i for every station Ss. This value is different from 0 only if there is effectively
a metro either braking or accelerating near the station at this particular time.
These values are modified according to the acceleration and braking phases of
the metros at each time point. We have

> (0 if metro accelerating near S,
P, ; ¢ <0 if metro braking near Sy 1<s<N,iel

)

=0 otherwise

10



The precise power values are supposed to be known beforehand by direct mea-
surement on the metro motors. Figure 2 illustrates the net power demand and
production of a metro during an interstation run. In a typical example depicted
in Figure 2, the parameters P, ; are given by the power curve for each time point

P(W)
3
Py,
brk
At At,2
) — T —r—rr—tt1—1 77 )I
: S
dt,l 1’1 d?ﬁc lz ()
Py,

Figure 2: Net power demand and production curve as a function of real time for a metro
accelerating and braking between two stations. The points on the curve represent the sampling
over discrete time.

4.8. FElectric Variables
The energy transfers are modelled by the following variables. By convention,

all voltages are positive and the currents can be negative.

e u,; € RT is the electric potential at station Sy, for 1 < s < N, at time
1€l

® i;; € R is the current flowing through the cable between stations S, and
Sestr1, for 1 <s < N —1, at time ¢ € 1.

. sz S € R is the current flowing from the electrical substation connected
to the station S, for 1 < s < N, at time ¢ € I.

° zi‘/flET € R is the current flowing between the network and the metro
located in S, for 1 < s < N, at time 7 € I.

4.4. Constraints and Instant Power Demand Value

The following equations constrain the current and voltage at each metro
station. Ohm’s law gives

Vs,i — Ust+1,i = Rs.isﬂ' 1<s<N— 1,i el (11)

Viss — vsi = Rpssily® 1<s<N,iel (12)

11



Kirchhoff’s current law gives
Qi+ issr HiZ9S i FT =0 1<s<Niel (13)
The satisfaction of the instant power gives rise to a non-linear equation:
Py =vs il FT 1<s<Njiel (14)

It is worth remarking that the instant power demand of a metro line P; is
not equal to the sum of the net instant power demands of the metros Zil P,
but to the power supplied by the electrical substations over the line to fulfil the
metro power demands:

N
Pi=Y VP max(0,i5%) el

S,1
s=1

This value represents the net power consumption of the metro line. The currents
iZ99 flowing through each ESS can be negative, i.e. can flow backwards from
the line to the grid, but this negative power is not counted in the instant power
consumption. Indeed, ESSs possess a rectifier that works as a diode and forces
the current to flow only in one direction. In reality, if an electrical substation
receives energy, typically when too many metros are braking and none is accel-
erating, the energy is absorbed by resistors that are placed on the line or on the
metros brakes.

5. Instant Power Demand Approximations

To simplify the evaluation of the power demand, some contributions in the
literature have made the choice of directly computing the power transfers be-
tween braking and accelerating metros instead of calculating voltages and inten-
sities, and deducing the power demand from it [1, 9, 12, 16, 19]. We introduce
in this section the notion of power flow network, which is a particular case of a
generalized flow network, to model these power transfers. The idea is that set-
ting the flow along the paths of the power flow network is an approximation of
the power transfers between braking and accelerating metros, the flow arriving
in the sink of the graph representing the power saved by regenerative braking
reuse.

Both the electrical simulator and the power flow, model the fact that one
accelerating metro can benefit from the regenerative energy of several braking
metros and that one braking metro can feed several accelerating metros. The
power flow approximation does not intend to reproduce exactly the electrical
behaviour of the metro line but rather to give a fast evaluation of it for the
optimization algorithm.

The distribution matriz A is the matrix of distribution ratios Ay g = (P —
Py/)/(Ps) € [0,1] between each stations Sy and Sy, with 1 < s’ < s < N, where
Py is the positive net power demand of a metro accelerating in station Sy, Ps

12



the negative net power production of a metro braking in station S, and P the
resulting power demand of the electrical network as computed by the electrical
simulator. The distribution ratio represents the ratio of power a metro braking
in station Sy effectively transfers to a metro accelerating in station Sg. As
Py > P, a value of 1 means that the energy is fully transferred and a value of 0
means that the energy is completely lost in resistors as a consequence of Joule
effects.

5.1. Power Flow Approximation

A generalized flow network is a finite directed graph G(V, E) given with
capacities ¢(u, v) on edges in E and a flow f(u,v) < ¢(u,v). The graph is given
in addition with positive gains v(u, v) such that, if a a flow f(u,v) is entering
at vertex v, then y(u,v).f(u,v) is going out from v:

Z ’Y(Ua v)f(u, 'U) = Z f('va u)? (15)

veV|(u,v)EE veV|(v,u)eE

Two vertices in V are distinguished, the source ¢ which can produce flow and
the sink ¢ which can absorb flow.
For each time i € I, the power flow network is the generalized flow network
defined by
V= {t, tl} U V'ibrk U V;acc’

‘/’ibrk:{871§3§N|PS’i<0}7 iEIa
‘/iaCC:{Sl,lSSISN|PS”i>O}7 i€I7
B {(t’s)} U {(S,S,)} U {(S,,tl)} s E ‘/ibrk’sl c ‘/iacc

and

c(t,s)i =Ps; ~(t,s)i=1
c(s,8')i =400 (s,8)i=Ass
c(s't")i=Pyy (s’ t)i=1

The instant power demand approximation P; can then be defined as:

P = Z le(s',t")i — f(s',1')i] (16)

Sle‘/iacc

Figure 3 shows an example of a power flow network modelling power transfers
between 3 metros braking in stations S1, S3 and S5, and 3 metros accelerating
in stations S3, Sg and S7;. The flows are attenuated between braking and ac-
celerating metros according to their distribution ratio A 5. The flows are not
bound and can be set freely between braking and accelerating metros. However,
they are bound by the powers produced or demanded at the source or to the
sink. The flows effectively arriving to the sink represent the regenerative power
that has been saved, while the sum of the capacities’ edges arriving to the sink
represent the total power demanded by the accelerating metros. Subtracting
these two values gives an approximation of the instant power demand.

13



Figure 3: Example of a generalized flow network. Flows are created by the source t and
absorbed by the sink ¢’. The left hand side of the graph contains the vertices corresponding
to the braking metros, which are connected to the vertices corresponding to the accelerating
metros on the right hand side. Each edge of the graph is characterized by a (capacity,gain)
couple.

5.2. Power Flow Algorithm

According to the equation (16), the power demand equation of the power
flow is equal to the capacities minus the flows directed to the sink. We have:

C(S/,t/)i — Ps’,i7 8/ c Vviacc
and, according to the flow conservation equation (15)

f(s'th = Z v(s,8)i-f(s,8); with v(s,8"); = Ay, s€E VI & Ve

Se‘/ibrk

We can also reformulate the flow f(s,s’); as the ratio of power transferred by
the metro braking at station S multiplied by the power P ;:

! brk / acc
f(575 )i = _xs,s’,i-Ps,ia ERS ‘/z , § € ‘/z

The power transfer ratio x s ; € [0,1] is the ratio of the power P ;, with s €
Vtrk transferred from the metro braking at station Sy to the metro accelerating
at station Sy such that z, o ; = —f(s, )i/ Ps..

The following power flow algorithm computes the power transfer ratios by
transferring the produced power of each braking metro in priority to the acceler-
ating metro whose distribution ratio is maximum, until all the produced power
is transferred. The algorithm returns the power transfer ratios z, s ;, either
when all braking metros have transferred their power or when all accelerating
metros have their demand fulfilled:

14



Algorithm 1 Power transfer ratios computation at time 4
Require: Vace, Ve Ag o Py,

1: Initialize vector x5 ¢ ; < 0

2: while V% £ () do

3: Choose randomly s € V;>r¥

4 Prnrr < Ps;

5: while P, ; <0 do

6: if Ve % () then

7: Choose s" € V7 s.t. s' = argmaxy eyace (Ag o)
8: if —P;;.As s > Py, then '
9: T,5i < (P i/ Dss)/PINIT

10: Ps,i — Ps,i + Ps’,i/As,s’

11: ‘/iacc e ‘/illCC\{S/}

12: else

13: Tssri < Poi/PINIT

14: PS/,i <— Ps’,i + Ps,z*As}s’

15: Ps; <0

16: end if

17: else

18: P ;<0

19: end if

20: end while

21: V;brk — ‘/ibrk\{s}
22: end while
23: return vector x, ¢ ;

The instant power demand P; can now be reformulated with the non-linear

equation:
-Pi = Z Ps’,i + Z Z (Ps,i~xs,s’,i~As,s’)» (]-7)

s/evia,cc s/evia,cc Se‘/ibrk

5.8. Linear Approximation for MILP

To avoid introducing too many variables in MILP, Pena proposed in [12] a
linear approximation of the power flow, which tends to maximize the overlapping
times between acceleration and braking phases. The formulation of the power
flow is simplified by authorizing only one single transfer between one braking
metro and one accelerating metro. The objective function is then the sum,
weighted by the distribution matrix, of the overlapping times of these transfers.

The MILP model introduces two new variables to describe the overlaps be-
tween metros :

e V515 € {0,1}is aboolean variable equal to one if the trip T3, 1 < ¢ < M
braking in station S¢(s), 2 < s < N, transfers its power to the trip
Ty, 1 <t < M accelerating in Sy (s'), 1 < ¢ < N — 1. Otherwise it is
equal to 0.
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o O ;1.5 € Risthe overlapping time between the braking phase of the trip
T;, 1 <t < M at station Si(s), 2 < s < N, and the acceleration phase of
the trip Ty, 1 <t < M at station Sy (s'), 1 <s' < N —1.

Constraint
M N

SN e <1 1<t <M 1< <N (18)
t=1 s=1
ensures that each accelerating metro receives the totality of the power of at
most one braking metro, and constraint

M N
Yo sww 1 1<t<M, 1<s< N (19)

t'=1s'=1

ensures that each braking metro transfers the totality of its power to at most one
accelerating metro, effectively modelling the fact that metros are only authorized
to do one single pairing to transfer their power.

Constraint

Otsps <brkesysps 1<t<t' <M, 2<s<N,1<s<N-1 (20)

ensures that the overlapping time of a braking phase with an acceleration phase
cannot be bigger than the braking phase time brk; .
Constraints

Ot,s,t/,s’ S ?/Cé/ - a?’rsk + m(l - ’yt,s,t’,s’) (2]—)
Otsitrsr < s —dy o +m(l — v 50 .5) (22)

1<t<t' <M,2<s<N,1<s<N-1

ensure that the overlapping time is the minimum value of d7% — aé’fsk and a; s —

dy,, when v s 4, = 1. The member m(1—"; s .4,4), with m a big enough number,
ensures that O is never negative.
The MILP objective function used in [12]

M N M N

maximize Z Z Z Z (Op,spr,50 - Ds ) (23)

t=1s=1t'=1s'=1

is the sum of all overlapping times of the timetables, weighted by the distribution
matrix. The weights tend to synchronize braking and accelerations that are close
to each other.

Concerning the size of the generated MILP instances, the model contains:

e M?.N? boolean variables v, M?2.N? overlapping times variables O and
M.N dwell times variables dwe,

e 3M2.N? + 2M.N MILP constraints (Equations 18, 19, 20, 21, 22) and
5M.N + 2M timetable constraints (Equations 1, 2, 3, 4, 5, 6, 7).
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The MILP model thus introduces a quadratic number of variables and con-
straints in the number of trips and stations. A pre-processing have been pro-
posed in [12] to remove irrelevant constraints and variables. In particular, the
number of overlapping variables Oy s+ o+ to consider can be reduced by noticing
that two trips T and T such that d; 1 > dy/ 1 +trty cannot overlap in any case.
However, this pre-processing is not sufficient to handle real data timetables as
we will show in Section 8.

6. Greedy Heuristics Algorithm for (G, dwe, nonlin)

The idea of our heuristic algorithm is to shift the acceleration phases to
synchronize them with braking phases and to recompute the non-linear objec-
tive function to check for improvement. These local moves increase the power
transfers between braking and accelerating metros, and possibly decrease the
solution timetable global energy consumption.

6.1. Braking Phase Neighbourhood

The time neighbourhood of a braking phase N(ay ) is defined as the set
of acceleration phases that can overlap this braking phase within the given
timetable tolerances. This means that every acceleration phase that may start
before the end and finish after the beginning of a given braking phase, belongs
to the neighbourhood of the latter:

Nars) = {dp o |(t # ') Adi% + dwey o > af’) A(dy o + dwe s < ars)}

6.2. Acceleration Phase Shift Function

The acceleration phase shift function consists in modifying the departure
time d; s of a trip T} at a station S;(s) to make it correspond to the beginning
of the neighbour braking phase alg?"”;', of a trip Ty at station Sy (s’), and by fixing
accy,s. The function considers the timetable constraints given by the bounds on
dwell times, trip times and headways. If the function cannot shift the departure
time of the acceleration to the beginning of the braking phase due to tolerance
constraints, it will shift it to the closest time which respects these constraints:

Shift(dy,s, al’®,) =

’
sS

dys = min(a’t’,’"”;,, dy,s — min(dwey s, trty, hdw, s)) if dy s < abr®

’
sS

{dt)S = max(ai’,’:’;, dy,s — max(dwey s, trty, hdwy s))  if dy s > abr®

Modifying d; s consists thus in modifying the duration of dwe; , which will shift
the future arrivals and departures a; s and d; o such that s’ > s.
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6.3. Greedy Heuristics Optimization Algorithm

The algorithm comprehensively searches the acceleration phase shift that
minimizes the objective function in the time neighbourhood of each braking
phase,. All the braking phases are first sorted in chronological order and the
acceleration phases are shifted for the earliest braking phases.

For each braking phase, the algorithm computes its time neighbourhood
N (a,s), modifies each acceleration phase dy ¢ by applying the shift function
Shift(dy s, affsk) and checks whether this shift is decreasing the objective func-
tion. If it does, the best current objective function and the best shift are up-
dated.

When all the acceleration phases have been shifted and evaluated, the al-
gorithm shifts the acceleration phase that minimizes the most the objective
function, or does nothing if none of them decreases the objective function. This
monotonic behaviour ensures that the algorithm will converge after some itera-
tions and does not worsen the initial timetable. Once an acceleration phase is
shifted, it is removed from the pool of neighbour phases and cannot be shifted
any more for another braking phase. The following pseudo-code summarizes the
greedy heuristics optimization algorithm:

Algorithm 2 Greedy heuristics optimization algorithm
Require: 77T
1: Sort a¢ s, 1 <t < M,2<s <N in chronological order
2: for all a; s do

3: Compute initial objective function GZ¥/T
4: Initialize best objective function G7B-;E-ST = G%—NTI T
5: Initialize best shift dBF5T =0

6: Compute N (ay,s)

7: for all dy/ o € N(a; ) do

8: dTNVIT dt’,s/

9: Shift(dt/’s/7 at’s)

10: Compute G771

11: if Grr < G$7E—ST then

12: GBEST « Grr

13: dBEST “— dt’,s’

14: end if

15: dyr g dNIT

16: end for

17: if dPF5T £ (0 then

18: Shift(dBEST a, )

19: end if
20: end for

21: return 77T, GEEST
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6.4. Incremental Computation of the Objective Function

Equation (17) shows that the instant power demand P; is a function of the
net power demands and productions P; ;, the power transfer ratios x5 o ; and
the distribution matrix A, . Since the distribution matrix is precomputed,
only the power transfers are modified by the optimization process.

In our dedicated heuristics, the objective function is re-evaluated every time
an acceleration phase is shifted. Since a shift consists in modifying the dwell
time of a specific trip at a specific station, many time instants remain with the
exact same net power demand and production along the timetable. Let P/NIT
be the instant power demand at time ¢ before a dwell time shift and PSI NIT he
the net power demands and productions at each station S, at time 7. After the
dwell time shift, only the instant power demands where the power demands and
productions have changed need recomputing, as follows:

p_ PINIT if p ; = PSI’?”T V1<s<N,
needs recomputation otherwise
The incremental computation avoids recomputing known values, which increases

the computation time of the algorithm by an order of magnitude as shown in
Table 3 on six benchmark instances detailed in the following section.

Computation Time (s)
Regular Incremental

Instance Length #d: s

opl 15 min 127 34.9 7.31
op2 15 min 129 31.0 7.51
op3 60 min 449 530 52.5
pl 15 min 173 102 18.3
p2 15 min 186 134 25.7
p3 60 min 670 1495 168

Table 3: Computation time in seconds of one run of the greedy heuristics without and with
incremental computation of the objective function. The two implementations are compared
on the six benchmark instances described in Section 7 representing typical off-peak (op) or
peak (p) hours timetables. The lengths of the timetable instances are either 15 or 60 minutes
and the number of decision variables #d;,s are given.

6.5. Iterative Optimization

After one run of the algorithm, the optimized timetable can be utilized
as input for a second run starting from the new solution. The optimization
algorithm can thus be executed either once or iteratively until the iterative
algorithm stops improving the objective function.

Figure 4 shows the minimization of the objective function using iterative
optimization. It shows that the first run largely improves the timetable and
that the following iterations lead to further improvements.
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Figure 4: Evolution of the global energy consumption over computation time in seconds on
a sample timetable during the iterative optimization process. The first cross represents the
global energy consumption of the original timetable and the following ones the global energy
consumption by iterating the greedy heuristics.

7. Performance Results Compared to MILP and CMA-ES

In this section, the greedy heuristics algorithm is compared to MILP and
CMA-ES on six small size benchmark instances on which the three methods
give solutions. Both the greedy heuristics and CMA-ES [13] are implemented
in C++, and the MILP model is solved using CPLEX 12. The machine used
for the experiments is a PC with an Intel Core i5 with 3GB of RAM.

For all the following results, a timeout of 1500 seconds was set. If not speci-
fied otherwise, the objective function is computed using the electrical simulator
described in section 4. The greedy heuristics used the incremental computation
of the objective function and iterative optimization.

7.1. Benchmark Instances

The six timetables have been drawn from real data and represent relevant
portions of the timetable, i.e. peak (p) and off-peak (op) parts of size of 15
minutes and one hour. These instances contain the initial parameters of the
timetable (d{ﬁ”T, dwe! NIT int!NIT and so on) as well as the tolerances, given
by the customer, on which variables can be modified and by how much. The
tolerances on dwell times, trip times and headways are equal for all six instances.
For the sake of simplicity, the tolerance values are given relatively to the initial
timetable instance and dwe; s = —3 shall be read dwe; s — dwe{¥'" = —3. The
departure times, the interstation times, the braking and acceleration phases
lengths are fixed :
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dweys =—-3 1<t<M, 1<s<N
dwe;s =9 1<t<M,1<s<N
trty =—-30 1<t<M

trt; =30 1<t<M

M M
hdw; s = —30 te[2,7]u[7+2,M],1<s<N
. M M
hdwt’3:30 t€[2,7]U[7+2,M],1<5<N

7.2. Comparison with CMA-ES

Evolution strategies are stochastic search algorithms that try to minimize
an arbitrary objective function called fitness function. The covariance matrix
adaptation evolution strategy (CMA-ES) [13] applies to vectors of real-valued
variables and arbitrary real-valued fitness functions. This algorithm is a multi-
point method which at each iteration, samples the search space according to
multivariate normal distributions, estimates its covariance matrix, determines
a move to make in the most promising direction and updates the multivariate
normal distributions for the variables. One important characteristic of CMA-
ES compared to other meta-heuristics, is the limited number of parameters
that need to be set, namely the initial standard deviation and the termination
criteria. The other parameters are automatically adapted during the execution.
The CMA-ES

In our experiments, we use the default value for the population size 4 +
3log(#ds s). The optimization is stopped after 10 iterations without improve-
ment of the objective function. The initial distribution has a default variance of
(dwey,s — dwey )/ 7 for each trip at each station. A quadratic penalty function
is added to the objective function for each variable out of its domain, to enforce
the algorithm to search solutions within the given tolerances.

Table 4 shows the results of CMA-ES against our heuristics. Due to its
stochastic behaviour, CMA-ES has been run 100 times for each instance. The
table compiles the average computation time, and both the average and best
value found for the objective function over the 100 runs. The results show that
the greedy heuristics performs better than the best run of CMA-ES on four of
the six benchmark instances. On opl, our heuristics is better than the average
result of CMA-ES but not than its best result. Finally, CMA-ES is slightly
better than the greedy heuristics in average only for p3. The better performance
of the heuristic algorithm is partly due to the incremental computation of the
objective function, which cannot be implemented in CMA-ES since all solutions
are sampled randomly.

7.8. Comparison with MILP

As shown in Table 5, CPLEX is able to prove the optimality on the four
smallest instances and outperforms the greedy heuristics on the linear objective
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Initial CMA-ES Greedy Heuristics

Inst. Length #d;s Value Value
Average Best
opl 15 min 127 2514 2401 2381 256 2394 45.6
op2 15 min 129 2516 2402 2388 223 2376 38.0
op3 60 min 449 9956 9724 9716 761 9556 648
pl 15 min 173 3433 3300 3285 503 3262 178
p2 15 min 186 3651 3516 3483 669 3442 291
p3 60 min 670 13067 12696 12675 1030 12713 1500

Time Value Time

Table 4: Compared performance in computation time (Time in seconds) and energy consump-
tion (Value in kW.h) between the average and best values found over 100 runs of CMA-ES
and the greedy heuristics on six benchmark instances. The instances op represent an off-peak
hour timetable and the instances p represent a peak hour timetable, both of either 15 minutes
or 60 minutes long.

Initial Greedy Heuristics MILP
Instance Length  #d:.s Value Value Value Integrality gap
opl 15 min 127 12.48s 101.8 s 318.1 s optimal
op2 15 min 129 11.48 s 159.1 s 351.6 s optimal
op3 60 min 449 45.97 s 8179 s 1637 s 10.62%
pl 15 min 173 250.5 s 414.8 s 772.5 s optimal
p2 15 min 186 279.1s 533.8 s 835.8 s optimal
p3 60 min 670 1019 s 1576 s 3003 s 20.44%

Table 5: Compared performances over the MILP objective function (Value in s) between
CPLEX and the greedy heuristics on six benchmark instances. The MILP solutions are given
with their integrality gap, optimal standing for 0%. The instances op represent an off-peak
hour timetable and the instances p represent a peak hour timetable, both of either 15 minutes
or 60 minutes long.

function (Equation 23). However, when comparing both optimization methods
on the objective function computed with the electrical simulator (Table 6), our
greedy heuristics performs better on five of the six instances.

Initial MILP Greedy Heuristics
Value Value Time Value Time
opl 15 min 127 2514 2427 0.72 2394 45.6
op2 15 min 129 2516 2419 1.00 2376 38.0
op3 60 min 449 9956 9579 1500 9556 648
pl 15 min 173 3433 3281 460 3262 178
p2 15 min 186 3651 3494 82.5 3442 291
p3 60 min 670 13067 12711 1500 12713 1500

Instance Length  #d: s

Table 6: Compared performances in computation time (Time in seconds) and energy consump-
tion (Value in kW.h) between MILP and the greedy heuristics on six benchmark instances.
The instances op represent an off-peak hour timetable and the instances p represent a peak
hour timetable, both of either 15 minutes or 60 minutes long.

This is due to the fact that the linear objective function is less accurate
that the one used in the greedy heuristics (Equation 17). The main differences
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between these two objective functions are that the MILP model is only able
to pair one braking with one acceleration (Equations 18, 19), when the power
flow objective function is able to dispatch dynamically to different braking and
accelerations over time as described in Section 5.2. Thus eventhough our algo-
rithm does not prove optimality, it better approximates the real behaviour of
the electricity flows and leads to better solutions.

8. Performance Results on Real Data

Our greedy heuristics has also been applied on a major city metro line com-
prising 16 stations for optimizing one full day timetable in two typical situations:

o a weekday timetable comprising 694 trips and 9585 dwell times,

e a Sunday timetable comprising 556 trips and 7679 dwell times.

Both the C++ implementation of CMA-ES and the MILP resolution by CPLEX
have failed to tame problems of this size. The MILP model contains, after
its pre-processing, 230908 constraints and 165760 variables, whose 52872 are
binary, and runs out of memory on CPLEX on a PC with an Intel Core i5
with 3GB of RAM.. The size of this instance is to relate with the size of the
problem handled in [12] which was containing only 17850 constraints and 13860
variables, whose 4780 were binary. For CMA-ES; it fails at computing the global
energy consumption of the initial population within 30 minutes. On the other
hand, our greedy heuristics is able to compute a solution in 20 minutes. The
tolerances on the dwell times, trip times and headways have been first set such
that there is no visible change in the quality of service for the passengers. Their
relatively small values are as follows:

dwer s =-3 1<t<M,1<s<N
dwep s =3 1<t<M, 1<s<N
trty =—15 1<t<M

trt; =15 1<t<M

M M
hdw; s = —15 te[2,7]u[7+2,M]71§s§N
— M M
hdw, s = 15 te[2,7]u[7+2,M],1gs§N

For the Sunday timetable, the trip times and headways tolerances have been
enlarged to 20 seconds as follows:

trt, =—20 1<t<M
trt; =20 1<t< M

M M
hdwt7s:—20 t€[2,7]u[7+2,M],1SSSN
N M. M
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While the optimized timetable with regular tolerances is saving energy by 7.54%,
the solution with increased tolerances can save up to 8.91%, increasing possibil-
ities to synchronize phases better. Table 7 summarizes these results.

Instance  Length #d:s Initial CMA-ES MILP Greedy heuristics

weekday 1 day 9585 218294 - - 207052 (-5.15%)
sundayl5 1day 7679 189953 - - 175638 (-7.54%)
sunday20  1day 7679 189953 - - 173036 (-8.91%)

Table 7: Compared performances in terms of energy consumption, given in kW.h, of CMA-ES,
CPLEX and the greedy heuristics on three full size timetables. CMA-ES and CPLEX did not
manage to output a solution. The ratios represent the energy savings compared to the initial
timetable energy consumption.
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Figure 5: Weekday timetable between 6am and lam: energy consumption by intervals of 30
minutes compared between the initial the timetable, in red, and timetable computed by the
greedy heuristics in green.

Figures 5, 6 and 7 compare the initial and optimized timetable energy con-
sumptions on three real data instances. For the weekday timetable, the two peak
hour periods are clearly visible, from 8am to 1lam and from 5pm to 9pm. It
appears that more energy is saved during these hours. This is due to the fact
that, according to the computed distribution matrix Ag s, the energy transfers
can be done only between metros that are very close from each other. Since the
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Figure 6: Sunday timetable between 6am and lam with a tolerance of 15 seconds on trips
and headways: energy consumption by intervals of 30 minutes compared between the initial
timetable, in red, and the timetable computed by the greedy heuristics in green.

density of metros on the line is higher during peak hours, it is thus possible to
save more energy during these times. The extrapolation of these savings shows
that the metro company could save 3.65 GW.h of electrical energy per year.

9. Conclusion

In this paper, we have proposed a generic mathematical model for metro
energy optimization problems and a dedicated heuristics for solving the global
energy consumption optimization problem by the sole modification of dwell
times. This model has led us to a simple classification by triples of several
similar problems of the literature, and to prove their NP-hardness.

We have shown that our heuristic algorithm for the problem (G, dwe, nonlin)
performs better than the classical optimization methods used in the literature.
On six small size benchmark instances on which MILP and CMA-ES could be
run, we have shown that our heuristic algorithm computes better solutions. In
particular for the MILP formulation, the results computed by CPLEX were of
lesser quality due to the linear approximation of the objective function whereas
our heuristics uses a non-linear power flow approximation. It was also shown
to perform better than the state-of-the-art metaheuristic CMA-ES on these
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Figure 7: Sunday timetable between 6am and lam with a tolerance of 20 seconds on trips
and headways: energy consumption by intervals of 30 minutes compared between the initial
timetable, in red, and the timetable computed by the greedy heuristics in green.

instances thanks to the possibility of incrementally computing the objective
function over iterations.

Furthermore, our dedicated heuristics was the only method able to solve
a full day timetable of 7679 variables for the Sunday configuration and 9585
variables for the weekday configuration, decreasing the global energy consump-
tion by 5.15% and 7.54%, and up to 8.91% by increasing the tolerances on the

variables. These results show the applicability of this method in an industrial
context.
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Appendix A. NP-completeness proofs

Theorem 1. The problem (G,dep,lin) is NP-hard.

Proof 1. We show that there is a polynomial reduction of SAT to (G, dep, lin).
Let X = {x1,...,xn} be a set of m variables and =X = {—z1,..., 2, } be the
set of their negations. Let = ¢ be a Boolean formula in conjunctive normal
form:

where ¢; are clauses of the form \/;”=1 l;j with [; ; € X U—-X.

Let us consider the discrete time domain I = {0,...,6n — 1}. Let 7T be
the metro timetable composed of a sequence of m + 1 trips T = (zq, Z1, ..., Tp)
running in the same direction, such that each trip x; € T crosses a sequence of
unique stations of length n + 1, and that the trips are :

e The trip z¢ cannot be shifted and is crossing stations every 6 time units,
departing from its first station at time ¢ = 0:

— doo=0
—intgs =1 1<s<n
— dweps =5 2<s<n

Reminding the auxiliary variables equations:
— the interstation time for a given trip,

intes =arsy1 —des 0<t<m, 1<s<m, (A1)

— the dwell time, or stopping time, in a station for a given trip,
dwey s =dps —ars 0<t<m, 2<s<mn, (A.2)

let us prove by induction that do s =6(s —1), 1 <s <n:

Basis: the statement holds for s = 1,
dpp=0=6(1-1)

Inductive step: if do s = 6(s — 1), then dg s+1 = 6s.

We can write
do,s+1 = do,s + a0,s+1 — do,s + do,s+1 — G0, s+1
According to (A.1) and (A.2) we have:

do,s+1 = do,s +int s + dwey 511
<:>d0,5+1 :6(571)+1+5
=4 d07s+1 = 6s
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We thus have:

dos=06(s—1), 1<s<n (A.3)
ao,s = do,s—1 +intgs—1 =6(s —2)+1, 2<s<n+1 (A.4)

e Furthermore, the only possible shift applicable on trips z; in this timetable
is a delay of their departure time by 1 time unit, denoted &; € {0,1}. The
trips ; with 1 < t < m are constructed according to the clauses ¢; of ¢
as follows:

Oifzy € 1
—dig =0+ lifx,€c; 1<t<m
2 otherwise
4if x4 € ¢,
-t =¢3if o, €cs 1<t<m, 1<s<n
2 otherwise
2 if x; € ¢,
—dweps=<93if -z €c; 1<t<m, 2<s<n
4 otherwise
Like for x(, we prove by induction that
0if x; € ¢
dis=6(s—1)+0,+¢1if~as€c, ,1<t<m,1<s<m
2 otherwise

Basis: the statement holds for s = 1,

0Oif z; € 1 0if z; € ¢1
din=8+1lif-z,€c; =6(1—-1)+6+q1if ~zy €y
2 otherwise 2 otherwise
0if x4 € ¢4

Inductive step: if dy ¢ = 6(s — 1) 4+ 0, + < 1 if =y € ¢

)

2 otherwise

0 lf Tt S Cs-&-l
then dt,s-‘,—l = 6s + (5t + q1if X € Csy1
2 otherwise

We can write

dis41 = dis + apspr1 — des + dis41 — Qp 541
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According to (A.1) and (A.2) we have:

dis41 = di s +inty s + dweg 11

0+4if x; € ¢ 2if z, € c541
<:>dt,s+l :6(8—1)+(5t+ 143 if XL € Cg + ¢ 3 if xry € Cs+41
2 + 2 otherwise 4 otherwise

0if x; € Cs+1
<=>dt,s+1:6(8—1)+(5t+4+2 1if—|(£t605+1

2 otherwise

0 if Tt € Csq1
= dt,s+1 =65+ 5t +<1if X € Cs41

2 otherwise
We thus have:

0if x; € ¢,
dis= 6(s—1)4 0+ < 1if =z € ¢4 1<t<m, 1<s<n (A5)

)

2 otherwise

O0+4if xy € cs5_q
At s = dt,s—l + Z-’Iltts_l = 6(8 — 2) + (St + 1 -+ 3if X € Cs—1
2 + 2 otherwise
Sas= 6(s—2)+0,+4, 1<t<m,2<s<n+1 (A.6)

Let the instant power demand function be
P =max(0,Y P;) i€l (A7)
t=0

where P, ; € R is the power demand or production of the trip z; at time 7. The
objective function is G77. Let the trip acceleration and braking phases last
one time unit only. Each trip will demand one unit of power when departing
from a station, and will produce one unit of power when arriving to a station.
The rest of the time, each trip will not demand or produce any power. For all
trips x;, the instant power demand or production P ; at time ¢ can be written
as follows:

lifd1<s<n s.t. dis =1

Pi=¢-1if32<s<n+1 st as=1 (A.8)
0 otherwise

Now let us prove that the global energy consumption is not modified by
the powers produced by trips {z1, ..., 2} since they brake it when no trip is
accelerating. According to equations (A.6) and (A.8) we have:

Pi=-1ifi=6(s—2)+(4ord), 1<t<m,2<s<n+l
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Conversely and according to equations (A.3), (A.5) and (A.8), we have for all
trips ¢ € T

P;=1ifi=6(s—1)+(0orlor2or3), 0<t<m, 1<s<n (A9)

Thus, there is no time where the braking of any trip in {z1,...,2,,} can be
synchronized with the acceleration of any trip in 7"

Miel1<t<m,0<t'<m)|P;=-1APy;=1

On the other hand, the braking phases of the trip x¢ can be absorbed by
the acceleration phases of the other trips, optimizing the objective function.
According to equations (A.4) and (A.8) we have:

Pyi=-1lifi=ags=6(s—2)+1 2<s<n+1

Also according to equation (A.9), P, = 1ifé = dys. To synchronize the
acceleration of the trip z; at station s with one braking of the trip o we need:

a0,s+1 = dt,s
0if zy € ¢
& 6(s+1—-2)+1=6(s—1)+0 + ¢ 1if -z € cq
2 otherwise

& (6 =0A-2s €cs)V (0 =1Az4 € )

In other terms, the timetable is constructed such that for each trip z; and for
each station s we have:

e If the variable z; is in the clause c,, then the acceleration phase of x;
at station Sy(s) is synchronized with the braking phase of zy at station
So(s + 1) if and only if 6; = 1. Thus setting §; = 1 is equivalent to say
that the variable x; is true, satisfying all clauses c¢s containing it.

e If the variable —z; is in the clause c,, then the acceleration phase of x;
at station Sy(s) is synchronized with the braking phase of xg at station
So(s + 1) if and only if §; = 0. Thus setting d; = 0 is equivalent to say
that the variable —x; is true, satisfying all clauses ¢ containing it.

e If neither the variable x; nor the variable —z; are in the clause c,, then
the acceleration phase of x; at station S¢(s) cannot be synchronized with
any of the braking phases of .

Every time one braking phase of xg is synchronized with the acceleration
phase of one trip x;, one unit of power is saved. Given the period of time
I and the structure of the timetable, there is n power units that an optimal
synchronization could save. Consequently, considering the decision problem of
saving n power units, there is a timetable and a set of §; with 1 <t < m that
save n units of power if and only if the set of § corresponds to a valuation that
satisfies ¢ ; the n synchronizations corresponding to the n satisfied clauses.
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Corollary 1. The problem (G, dep, nonlin) is NP-hard.

Proof 2. A problem is of class nonlin if it exists at least one equation which
is non-linear. Modifying the equation (A.7) of the previous timetable into the
non-linear equation
P = 0,57 Py)if 61 <i<6l+3
max(0, 21— L) 6L < i<6l+. Vo<i<n-—1
Py =max(0, ;o Py ") if 6l +4 <i<6l+5

with & € N, does not change the result of the objective function. Indeed, the
timetable is constructed in such a way that Z:lo P; <0, forall 6l +4 <3<
6l+5 and 0 < < n—1. Thus, like for the previous timetable, P; = 0, for all 6]+
4<i<6l4+5and 0 <! <n-—1. Finally the problem becomes (G, dep, nonlin)
without changing its resolution, thus the problem (G, dep, nonlin) is NP-hard.

Corollary 2. The problem (G,dep — dwe — int,lin) is NP-hard.

Proof 3. A problem is of class dwe if at least one dwell time can be modified.
Likewise, a problem is of class int at least one interstation time can be modified.
To get a problem (G, dep — dwe — int, lin), it suffices to add at the end of the
timetable constructed in the proof of Theorem 1, one period of time where
only xg is running, and where its last dwell time and interstation time can be
modified.

Let us thus consider the metro timetable 7T crossed by a sequence of m+ 1
trips T' = (x¢, 21, ..., Tm) crossing n + 1 stations each which encodes a Boolean
formula in CNF containing n clauses. To correctly encode the formula, the
timetable should have a length of 6n — 1 time units. Let us add at the end of
the timetable 4 additional time units where only z( is crossing a new station
So(n + 2) such that:

dont1 = 61

agn+2 = 6n+1

Now, the last dwell time of xy can be extended by one time unit, encoded in
5dwe = {07 1}7
dweO,nJrl =5+ 6dwey

and the last interstation time of zy can be extended by one time unit, encoded
in Jint = {O, 1},
intone1 = 14 dine

By adding these two tolerances, the problem (G, dep,lin), which encodes the
SAT formula and which is NP-hard, has become a problem (G,dep — dwe —
int,lin). Thus the problem (G, dep — dwe — int, lin) is NP-hard.
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