G. Bisson, R. Cosset, and D. Robert, AVIsogenies: a library for computing isogenies between abelian varieties

D. G. Cantor, Computing in the Jacobian of a hyperelliptic curve, Mathematics of Computation, vol.48, issue.177, pp.95-101, 1987.
DOI : 10.1090/S0025-5718-1987-0866101-0

R. Carls, A generalized arithmetic geometric mean The Netherlands, 2004.

J. Couveignes and T. Ezome, Computing functions on Jacobians and their quotients, LMS Journal of Computation and Mathematics, vol.2, issue.01, pp.555-577, 2015.
DOI : 10.1007/978-3-662-03338-8

URL : https://hal.archives-ouvertes.fr/hal-01088933

E. V. Flynn, The Jacobian and formal group of a curve of genus 2 over an arbitrary ground field, Mathematical Proceedings of the Cambridge Philosophical Society, vol.1, issue.03, pp.425-441, 1990.
DOI : 10.1007/BF01389737

P. Gaudry and R. Harley, Counting Points on Hyperelliptic Curves over Finite Fields, Algorithmic Number Theory, 4th International Symposium, ANTS-IV, pp.313-332, 2000.
DOI : 10.1007/10722028_18

URL : https://hal.archives-ouvertes.fr/inria-00512403

P. Gaudry, D. Kohel, and B. Smith, Counting Points on Genus 2 Curves with Real Multiplication, Advances in Cryptology?ASIACRYPT 2011, pp.504-519, 2011.
DOI : 10.1007/978-3-642-25385-0_27

URL : https://hal.archives-ouvertes.fr/inria-00598029

P. Gaudry and E. Schost, Genus 2 point counting over prime fields, Journal of Symbolic Computation, vol.47, issue.4, pp.368-400, 2012.
DOI : 10.1016/j.jsc.2011.09.003

URL : https://hal.archives-ouvertes.fr/inria-00542650

G. Van and . Geer, Hilbert Modular Surfaces, 1988.

D. Grant, Formal groups in genus two, J. Reine Angew. Math, vol.411, pp.96-121, 1990.

K. Gundlach, Die Bestimmung der Funktionen zur Hilbertschen Modulgruppe des Zahlk???rpersQ ( $$\sqrt 5 $$ ), Mathematische Annalen, vol.1, issue.3, pp.226-256, 1963.
DOI : 10.1007/BF01470882

M. C. Harrison, An extension of Kedlaya???s algorithm for hyperelliptic curves, Journal of Symbolic Computation, vol.47, issue.1, pp.89-101, 2012.
DOI : 10.1016/j.jsc.2011.08.019

D. Harvey, Kedlaya's Algorithm in Larger Characteristic, International Mathematics Research Notices, vol.29, issue.22, 2007.
DOI : 10.1093/imrn/rnm095

URL : http://arxiv.org/pdf/math/0610973

E. W. Howe and H. J. Zhu, On the Existence of Absolutely Simple Abelian Varieties of a Given Dimension over an Arbitrary Field, Journal of Number Theory, vol.92, issue.1, pp.139-163, 2002.
DOI : 10.1006/jnth.2001.2697

J. Igusa, On Siegel Modular Forms of Genus Two, American Journal of Mathematics, vol.84, issue.1, pp.175-200, 1962.
DOI : 10.2307/2372812

J. Igusa, Modular Forms and Projective Invariants, American Journal of Mathematics, vol.89, issue.3, pp.817-855, 1967.
DOI : 10.2307/2373243

A. Joux and R. Lercier, ``Chinese & Match'', an alternative to Atkin's ``Match and Sort'' method used in the SEA algorithm, Mathematics of Computation, vol.70, issue.234, pp.827-836, 2001.
DOI : 10.1090/S0025-5718-00-01200-X

K. S. Kedlaya, Counting points on hyperelliptic curves using Monsky?Washnitzer cohomology, J. Ramanujan Math. Soc, vol.16, issue.4, pp.323-338, 2001.

S. Lang, Introduction to Algebraic and Abelian Functions, Graduate Texts in Mathematics, vol.89, 1982.
DOI : 10.1007/978-1-4612-5740-0

S. Lang, Algebraic Number Theory, volume 16 of Graduate Texts in Mathematics, 1986.

K. Lauter, M. Naehrig, and T. Yang, Hilbert theta series and invariants of genus 2 curves, Journal of Number Theory, vol.161, pp.146-174, 2016.
DOI : 10.1016/j.jnt.2015.02.020

K. Lauter and T. Yang, Computing genus 2 curves from invariants on the Hilbert moduli space, Journal of Number Theory, vol.131, issue.5, pp.936-958, 2011.
DOI : 10.1016/j.jnt.2010.05.012

URL : https://doi.org/10.1016/j.jnt.2010.05.012

R. Lercier, Algorithmique des courbes elliptiques dans les corps finis, 1997.
URL : https://hal.archives-ouvertes.fr/tel-01101949

C. Martindale, Isogeny Graphs, Modular Polynomials, and Applications, 2017.

J. Mestre, Lettrè a Gaudry et Harley, 2001.

J. Mestre, Algorithme pour compter des points de courbes en petite caractéristique et petit genre, 2002.

E. Milio, Computing modular polynomials in dimension 2, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01240690

E. Milio, A quasi-linear time algorithm for computing modular polynomials in dimension 2, LMS Journal of Computation and Mathematics, vol.18, issue.01, pp.603-632, 2015.
DOI : 10.2748/tmj/1178224764

URL : https://hal.archives-ouvertes.fr/hal-01080462

J. S. Milne, Abelian Varieties, Arithmetic Geometry, pp.103-150, 1984.
DOI : 10.1007/978-1-4613-8655-1_5

R. Müller, Hilbertsche Modulformen und Modulfunktionen zu $$\mathbb{Q}(\sqrt 5 )$$, Archiv der Mathematik, vol.89, issue.3, pp.239-251, 1985.
DOI : 10.1007/978-3-642-61867-3_7

J. Pila, Frobenius maps of abelian varieties and finding roots of unity in finite fields, Mathematics of Computation, vol.55, issue.192, pp.745-763, 1990.
DOI : 10.1090/S0025-5718-1990-1035941-X

H. Rück, Abelian surfaces and Jacobian varieties over finite fields, Compositio Math, vol.76, issue.3, pp.351-366, 1990.

T. Satoh, On p-adic Point Counting Algorithms for Elliptic Curves over Finite Fields, Algorithmic Number Theory, pp.43-66, 2002.
DOI : 10.1007/3-540-45455-1_5

R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p, Math. Comp, vol.44, issue.170, pp.483-494, 1985.

R. Schoof, Counting points on elliptic curves over finite fields, Journal de Th??orie des Nombres de Bordeaux, vol.7, issue.1, pp.219-254, 1995.
DOI : 10.5802/jtnb.142

URL : http://www.emath.fr/Maths/Jtnb/SAUVE/almira.math.u-bordeaux.fr/jtnb/1995-1/schoof.ps

A. V. Sutherland, On the evaluation of modular polynomials, ANTS X?Proceedings of the Tenth Algorithmic Number Theory Symposium of Open Book Series, pp.531-555, 2013.
DOI : 10.1112/S1461157012001106

W. Tautz, J. Top, and A. Verberkmoes, Explicit hyperelliptic curves with real multiplication and permutation polynomials, Journal canadien de math??matiques, vol.43, issue.5, pp.1055-1064, 1991.
DOI : 10.4153/CJM-1991-061-x

L. C. Washington, Elliptic Curves: Number Theory and Cryptography, volume 50 of Discrete Mathematics and its Applications, 2008.
DOI : 10.1201/9781420071474