J. J. Tomaszewski, R. G. Uzzo, and M. C. Smaldone, Heterogeneity and renal mass biopsy: a review of its role and reliability, Cancer Biol. Med, vol.11, issue.3, pp.162-172, 2014.

A. R. Padhani, G. Liu, D. M. Koh, T. L. Chenevert, H. C. Thoeny et al., Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations, Neoplasia, vol.11, issue.2, pp.102-125, 2009.

R. J. Theilmann, R. Borders, T. P. Trouard, G. Xia, E. Outwater et al., Changes in Water Mobility Measured by Diffusion MRI Predict Response of Metastatic Breast Cancer to Chemotherapy, Neoplasia, vol.6, issue.6, pp.831-837, 2004.

M. D. Pickles, P. Gibbs, M. Lowry, and L. W. Turnbull, Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer, Magn. Reson. Imaging, vol.24, issue.7, pp.843-847, 2006.

P. A. Hein, C. Kremser, W. Judmaier, J. Griebel, K. P. Pfeiffer et al., Diffusion-weighted magnetic resonance imaging for monitoring diffusion changes in rectal carcinoma during combined, preoperative chemoradiation: Preliminary results of a prospective study, Eur. J. Radiol, vol.45, issue.3, pp.214-222, 2003.

D. M. Koh and D. J. Collins, Diffusion-weighted MRI in the body: Applications and challenges in oncology, Am. J. Roentgenol, vol.188, issue.6, pp.1622-1635, 2007.

C. Reischauer, J. M. Froehlich, M. Pless, C. A. Binkert, D. Koh et al., Early treatment response in non-small cell lung cancer patients using diffusion-weighted imaging and functional diffusion maps--a feasibility study, PLoS One, vol.9, issue.10, p.108052, 2014.

D. and L. Bihan, Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure, Radiology, vol.268, issue.2, pp.318-340, 2013.

A. Luna, J. C. Vilanova, and L. C. Hygino, Functional Imaging in Oncology: Clinical Applications, vol.2, 2014.

D. L. Bihan, E. Breton, D. Lallemand, M. Aubin, J. Vignaud et al., Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging, Radiology, vol.168, issue.2, pp.497-505, 1988.
URL : https://hal.archives-ouvertes.fr/hal-00349716

P. Marcon, K. Bartusek, and M. Cap, Sensitivity of the Diffusion Coefficients Measurement to Gradient Field Changes, PIERS Proceedings, pp.80-83, 2011.

K. Kono, Y. Inoue, K. Nakayama, M. Shakudo, M. Morino et al., The role of diffusion-weighted imaging in patients with brain tumors, AJNR. Am. J. Neuroradiol, vol.22, issue.6, pp.1081-1089, 2001.

Y. Hayashida, T. Hirai, S. Morishita, M. Kitajima, R. Murakami et al., Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity, AJNR. Am. J. Neuroradiol, vol.27, issue.7, pp.1419-1444, 2006.

H. Lyng, O. Haraldseth, and E. K. Rofstad, Measurement of Cell Density and Necrotic Fraction in Human Melanoma Xenografts by Diffusion Weighted Magnetic Resonance Imaging, Magn. Reson. Med, vol.43, issue.6, pp.828-836, 2000.

A. W. Anderson, J. Xie, J. Pizzonia, R. A. Bronen, D. D. Spencer et al., Effects of cell volume fraction changes on apparent diffusion in human cells, Magn. Reson. Imaging, vol.18, issue.6, pp.689-695, 2000.

D. T. Ginat, R. Mangla, G. Yeaney, M. Johnson, and S. Ekholm, Diffusion-weighted imaging for differentiating benign from malignant skull lesions and correlation with cell density, Am. J. Roentgenol, vol.198, issue.6, pp.597-601, 2012.

K. M. Schmainda, Diffusion-weighted MRI as a biomarker for treatment response in glioma, CNS Oncol, vol.1, issue.2, pp.169-180, 2012.

N. C. Atuegwu, D. C. Colvin, M. E. Loveless, L. Xu, J. C. Gore et al., Incorporation of diffusion-weighted magnetic resonance imaging data into a simple mathematical model of tumor growth, Phys. Med. Biol, vol.57, issue.1, pp.225-265, 2012.

J. A. Weis, M. I. Miga, L. R. Arlinghaus, X. Li, A. B. Chakravarthy et al., A mechanically coupled reaction-diffusion model for predicting the response of breast tumors to neoadjuvant chemotherapy, Phys. Med. Biol, vol.58, issue.17, pp.5851-66, 2013.

J. A. Weis, M. I. Miga, L. R. Arlinghaus, X. Li, V. Abramson et al., Predicting the Response of Breast Cancer to Neoadjuvant Therapy Using a Mechanically Coupled Reaction-Diffusion Model, Cancer Res, issue.615, 2015.

D. A. Hormuth, J. A. Weis, S. L. Barnes, M. I. Miga, E. C. Rericha et al., Predicting in vivo glioma growth with the reaction diffusion equation constrained by quantitative magnetic resonance imaging data, Phys. Biol, vol.12, issue.4, 2015.

M. Iima, O. Reynaud, T. Tsurugizawa, L. Ciobanu, J. Li et al., Characterization of glioma microcirculation and tissue features using intravoxel incoherent motion magnetic resonance imaging in a rat brain model, Invest. Radiol, vol.49, issue.7, pp.485-90, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01111044

A. M. Lemke, F. B. Laun, M. M. Klau, T. J. Re, D. Simon et al.,

L. R. Delorme, B. Schad, and . Stieltjes, Differentiation of Pancreas Carcinoma From Healthy Pancreatic, Invest. Radiol, vol.44, issue.12, pp.769-775, 2009.

M. Veta, J. P. Pluim, P. J. Van-diest, and M. A. Viergever, Breast cancer histopathology image analysis: a review, IEEE Trans

, Biomed. Eng, vol.61, issue.5, pp.1400-1411, 2014.

E. Cosatto, M. Miller, H. P. Graf, and J. S. Meyer, Grading nuclear pleomorphism on histological micrographs, International Conference on Pattern Recognition, pp.1-4, 2008.

X. Qi, F. Xing, D. J. Foran, and L. Yang, Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set, IEEE Trans. Biomed. Eng, vol.59, issue.3, pp.754-65, 2012.

M. Veta, P. J. Van-diest, R. Kornegoor, A. Huisman, M. A. Viergever et al., Automatic Nuclei Segmentation in H&E Stained Breast Cancer Histopathology Images, PLoS One, vol.8, issue.7, p.70221, 2013.

H. Xu, C. Lu, and M. Mandal, An Efficient Technique for Nuclei Segmentation in Histopathological Images based on Morphological Reconstructions and Region Adaptive Threshold, IEEE J. Biomed. Heal. Informatics, vol.18, issue.5, pp.1729-1741, 2014.

S. Wienert, D. Heim, K. Saeger, A. Stenzinger, M. Beil et al., Detection and segmentation of cell nuclei in virtual microscopy images: a minimum-model approach, Sci. Rep, vol.2, p.503, 2012.

H. Fatakdawala, J. Xu, A. Basavanhally, G. Bhanot, S. Ganesan et al., Expectation-maximization-driven geodesic active contour with overlap resolution (EMaGACOR): application to lymphocyte segmentation on breast cancer histopathology, IEEE Trans. Biomed. Eng, vol.57, issue.7, pp.1676-89, 2010.

C. Jung, C. Kim, S. W. Chae, and S. Oh, Unsupervised segmentation of overlapped nuclei using Bayesian classification, IEEE Trans. Biomed. Eng, vol.57, issue.12, pp.2825-2857, 2010.

J. P. Vink, M. B. Van-leeuwen, C. H. Van-deurzen, and G. De-haan, Efficient nucleus detector in histopathology images, J. Microsc, vol.249, issue.2, pp.124-159, 2013.

A. Friebel, J. Neitsch, T. Johann, S. Hammad, J. G. Hengstler et al., TiQuant: Software for tissue analysis, quantification and surface reconstruction, Bioinformatics, vol.31, issue.19, pp.3234-3236, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01257137

M. Puderbach, C. Hintze, S. Ley, M. Eichinger, H. Kauczor et al., MR imaging of the chest, vol.64, issue.3, pp.345-55, 2007.

C. Hintze, A. Stemmer, M. Bock, T. A. Kuder, F. Risse et al., A hybrid breath hold and continued respiration-triggered technique for time-resolved 3D MRI perfusion studies in lung cancer, Rofo, vol.182, issue.1, pp.45-52, 2010.

, MITK Diffusion

M. G. Rojo, G. B. García, C. P. Mateos, J. G. García, and M. ,

. Vicente, Critical comparison of 31 commercially available digital slide systems in pathology, Int. J. Surg. Pathol, vol.14, issue.4, pp.285-305, 2006.

J. Lotz, J. Berger, B. Müller, K. Breuhahn, N. Grabe et al., Zooming in: high resolution 3D reconstruction of differently stained histological whole slide images, Proceedings of the SPIE 9041, 2014.

M. Macenko, M. Niethammer, J. S. Marron, D. Borland, J. T. Woosley et al., A method for normalizing histology slides for quantitative analysis, Proceedings of the 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.1107-1110, 2009.

A. C. Ruifrok and D. A. Johnston, Quantification of histochemical staining by color deconvolution, Anal. Quant. Cytol. Histol, vol.23, issue.4, pp.291-300, 2001.

P. Bamford and B. Lovell, Unsupervised cell nucleus segmentation with active contours, Signal Processing, vol.71, issue.2, pp.203-213, 1998.

L. Yang, O. Tuzel, P. Meer, and D. J. Foran, Automatic image analysis of histopathology specimens using concave vertex graph, Med. Image Comput. Comput. Assist. Interv, vol.11, pp.833-874, 2008.

E. Gladilin, S. Goetze, J. Mateos-langerak, R. Van-driel, K. Rohr et al., Shape normalisation of 3D cell nuclei using elastic spherical mapping, J Microsc, vol.231, issue.1, pp.105-114, 2008.

I. Martin, B. Dozin, R. Quarto, R. Cancedda, and F. Beltrame, Computer-based technique for cell aggregation analysis and cell aggregation in in vitro chondrogenesis, Cytometry, vol.28, issue.2, pp.141-146, 1997.

J. H. Mcdonald, Kruskal-Wallis test, Handbook of Biological Statistics, pp.158-165, 2014.

C. Stecco, W. Hammer, A. Vleeming, and R. Caro, Functional Atlas of the Human Fascial System, 2015.

A. M. Khan, N. Rajpoot, D. Treanor, and D. Magee, A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution, IEEE Trans. Biomed. Eng, vol.61, issue.6, pp.1729-1738, 2014.

U. and D. Monte, Does the cell number 109 still really fit one gram of tumor tissue?, Cell Cycle, vol.8, issue.3, pp.505-506, 2009.

H. Kobayashi, R. Watanabe, and P. L. Choyke, Improving conventional enhanced permeability and retention (EPR) effects

, What is the appropriate target?, Theranostics, vol.4, issue.1, pp.81-89, 2014.

H. Boonstra, J. W. Oosterhuis, A. M. Oosterhuis, and G. J. Fleuren, Cervical tissue shrinkage by formaldehyde fixation, paraffin wax embedding, section cutting and mounting, Virchows Arch. A Pathol. Anat. Histopathol, vol.402, issue.2, pp.195-201, 1983.

T. Tran, C. P. Sundaram, C. D. Bahler, J. N. Eble, D. J. Grignon et al., Correcting the Shrinkage Effects of Formalin Fixation and Tissue Processing for Renal Tumors: toward Standardization of Pathological Reporting of Tumor Size, J. Cancer, vol.6, issue.8, pp.759-66, 2015.

M. Y. Bilgili, Reproductibility of apparent diffusion coefficients measurements in diffusion-weighted MRI of the abdomen with different b values, Eur. J. Radiol, vol.81, issue.9, pp.2066-2068, 2012.

M. Jang, S. M. Kim, B. Yun, H. S. Ahn, S. Y. Kim et al., Reproducibility of Apparent Diffusion Coefficient Measurements in Malignant Breast Masses, J. Korean Med. Sci, vol.30, issue.11, pp.1689-1697, 2015.

J. G. Whisenant, G. D. Ayers, M. E. Loveless, S. L. Barnes, D. C. Colvin et al., Assessing reproducibility of diffusion-weighted magnetic resonance imaging studies in a murine model of HER2+ breast cancer, Magn. Reson. Imaging, vol.32, issue.3, pp.245-249, 2014.

L. Chen, M. Liu, J. Bao, Y. Xia, J. Zhang et al., The correlation between apparent diffusion coefficient and tumor cellularity in patients: A meta-analysis, PLoS One, vol.8, issue.11, 2013.

S. Maetani, TNM staging system, Dis. Colon Rectum, vol.35, issue.1, p.104, 1992.